source: mds-and-trees/tree-genealogy.py @ 700

Last change on this file since 700 was 700, checked in by konrad, 7 years ago

Colors support matplotlib cmaps now. 'color' property in config file can take two more key values: 'cmap' and 'normalize_cmap'. Cmap is defined as in https://matplotlib.org/devdocs/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html but uses arrays instead of tuples. If 'normalize_cmap" == false, step values (first value in each tuple) must be normalized. Otherwise, if 'normalize_cmap" == true, step values can be raw property values (from the range of values in the data).

File size: 36.1 KB
RevLine 
[562]1import json
[624]2import math
[562]3import random
4import argparse
[624]5import bisect
6import time as timelib
7from PIL import Image, ImageDraw, ImageFont
[633]8from scipy import stats
[695]9from matplotlib import colors
[633]10import numpy as np
[562]11
[624]12class LoadingError(Exception):
13    pass
[562]14
[624]15class Drawer:
[571]16
[624]17    def __init__(self, design, config_file, w=600, h=800, w_margin=10, h_margin=20):
18        self.design = design
19        self.width = w
20        self.height = h
21        self.w_margin = w_margin
22        self.h_margin = h_margin
23        self.w_no_margs = w - 2* w_margin
24        self.h_no_margs = h - 2* h_margin
[571]25
[695]26        self.color_converter = colors.ColorConverter()
[562]27
[624]28        self.settings = {
29            'colors_of_kinds': ['red', 'green', 'blue', 'magenta', 'yellow', 'cyan', 'orange', 'purple'],
30            'dots': {
31                'color': {
[628]32                    'meaning': 'Lifespan',
[700]33                    'normalize_cmap': False,
34                    'cmap': {},
[628]35                    'start': 'red',
[624]36                    'end': 'green',
37                    'bias': 1
38                    },
39                'size': {
[628]40                    'meaning': 'EnergyEaten',
[624]41                    'start': 1,
[628]42                    'end': 6,
[624]43                    'bias': 0.5
44                    },
45                'opacity': {
[628]46                    'meaning': 'EnergyEaten',
47                    'start': 0.2,
48                    'end': 1,
[624]49                    'bias': 1
50                    }
51            },
52            'lines': {
53                'color': {
54                    'meaning': 'adepth',
[700]55                    'normalize_cmap': False,
56                    'cmap': {},
[624]57                    'start': 'black',
58                    'end': 'red',
59                    'bias': 3
60                    },
61                'width': {
62                    'meaning': 'adepth',
[627]63                    'start': 0.1,
[624]64                    'end': 4,
65                    'bias': 3
66                    },
67                'opacity': {
68                    'meaning': 'adepth',
69                    'start': 0.1,
70                    'end': 0.8,
71                    'bias': 5
72                    }
73            }
74        }
[577]75
[624]76        def merge(source, destination):
77            for key, value in source.items():
78                if isinstance(value, dict):
79                    node = destination.setdefault(key, {})
80                    merge(value, node)
81                else:
82                    destination[key] = value
83            return destination
[576]84
[624]85        if config_file != "":
86            with open(config_file) as config:
87                c = json.load(config)
88            self.settings = merge(c, self.settings)
89            #print(json.dumps(self.settings, indent=4, sort_keys=True))
[586]90
[700]91        self.compile_cmaps()
92
93    def compile_cmaps(self):
94
95        # normalization of color breaking points
96        for part in ['dots', 'lines']:
97            if self.settings[part]['color']['cmap'] \
98                    and self.settings[part]['color']['normalize_cmap']:
99                cmap = self.settings[part]['color']['cmap']
100                min = self.design.props[self.settings[part]['color']['meaning'] + "_min"]
101                max = self.design.props[self.settings[part]['color']['meaning'] + "_max"]
102                for key in cmap:
103                    for arr in cmap[key]:
104                        arr[0] = (arr[0] - min) / (max-min)
105                    if cmap[key][0][0] != 0:
106                        cmap[key].insert(0, cmap[key][0][:])
107                        cmap[key][0][0] = 0
108                    if cmap[key][-1][0] != 1:
109                        cmap[key].append(cmap[key][-1][:])
110                        cmap[key][-1][0] = 1
111
112
113        for part in ['dots', 'lines']:
114            if self.settings[part]['color']['cmap']:
115                cmap = self.settings[part]['color']['cmap']
116                for key in cmap:
117                    new_arr = []
118                    for arr in cmap[key]:
119                        new_arr.append(tuple(arr))
120                    cmap[key] = tuple(new_arr)
121                #print(cmap)
122                self.settings[part]['color']['cmap'] = colors.LinearSegmentedColormap('Custom', cmap)
123
[624]124    def draw_dots(self, file, min_width, max_width, max_height):
125        for i in range(len(self.design.positions)):
126            node = self.design.positions[i]
127            if 'x' not in node:
128                continue
129            dot_style = self.compute_dot_style(node=i)
130            self.add_dot(file, (self.w_margin+self.w_no_margs*(node['x']-min_width)/(max_width-min_width),
131                               self.h_margin+self.h_no_margs*node['y']/max_height), dot_style)
[585]132
[624]133    def draw_lines(self, file, min_width, max_width, max_height):
134        for parent in range(len(self.design.positions)):
135            par_pos = self.design.positions[parent]
136            if not 'x' in par_pos:
137                continue
138            for child in self.design.tree.children[parent]:
139                chi_pos = self.design.positions[child]
140                if 'x' not in chi_pos:
141                    continue
142                line_style = self.compute_line_style(parent, child)
143                self.add_line(file, (self.w_margin+self.w_no_margs*(par_pos['x']-min_width)/(max_width-min_width),
144                                  self.h_margin+self.h_no_margs*par_pos['y']/max_height),
145                                  (self.w_margin+self.w_no_margs*(chi_pos['x']-min_width)/(max_width-min_width),
146                                  self.h_margin+self.h_no_margs*chi_pos['y']/max_height), line_style)
[585]147
[624]148    def draw_scale(self, file, filename):
[626]149        self.add_text(file, "Generated from " + filename.split("\\")[-1], (5, 5), "start")
[562]150
[624]151        start_text = ""
152        end_text = ""
153        if self.design.TIME == "BIRTHS":
154           start_text = "Birth #0"
155           end_text = "Birth #" + str(len(self.design.positions)-1)
156        if self.design.TIME == "REAL":
157           start_text = "Time " + str(min(self.design.tree.time))
158           end_text = "Time " + str(max(self.design.tree.time))
159        if self.design.TIME == "GENERATIONAL":
[633]160           start_text = "Depth " + str(self.design.props['adepth_min'])
161           end_text = "Depth " + str(self.design.props['adepth_max'])
[576]162
[626]163        self.add_dashed_line(file, (self.width*0.7, self.h_margin), (self.width, self.h_margin))
164        self.add_text(file, start_text, (self.width, self.h_margin), "end")
[624]165        self.add_dashed_line(file, (self.width*0.7, self.height-self.h_margin), (self.width, self.height-self.h_margin))
[626]166        self.add_text(file, end_text, (self.width, self.height-self.h_margin), "end")
[562]167
[624]168    def compute_property(self, part, prop, node):
169        start = self.settings[part][prop]['start']
170        end = self.settings[part][prop]['end']
171        value = (self.design.props[self.settings[part][prop]['meaning']][node]
172                 if self.settings[part][prop]['meaning'] in self.design.props else 0 )
173        bias = self.settings[part][prop]['bias']
174        if prop == "color":
[700]175            if not self.settings[part][prop]['cmap']:
176                return self.compute_color(start, end, value, bias)
177            else:
178                return self.compute_color_from_cmap(self.settings[part][prop]['cmap'], value, bias)
[624]179        else:
180            return self.compute_value(start, end, value, bias)
[562]181
[700]182    def compute_color_from_cmap(self, cmap, value, bias=1):
183        value = 1 - (1-value)**bias
184        rgba = cmap(value)
185        return (100*rgba[0], 100*rgba[1], 100*rgba[2])
186
187
[624]188    def compute_color(self, start, end, value, bias=1):
189        if isinstance(value, str):
190            value = int(value)
[695]191            r, g, b = self.color_converter.to_rgb(self.settings['colors_of_kinds'][value])
[624]192        else:
[695]193            start_color = self.color_converter.to_rgb(start)
194            end_color = self.color_converter.to_rgb(end)
[624]195            value = 1 - (1-value)**bias
[695]196            r = start_color[0]*(1-value)+end_color[0]*value
197            g = start_color[1]*(1-value)+end_color[1]*value
198            b = start_color[2]*(1-value)+end_color[2]*value
199        return (100*r, 100*g, 100*b)
[562]200
[624]201    def compute_value(self, start, end, value, bias=1):
202        value = 1 - (1-value)**bias
203        return start*(1-value) + end*value
[564]204
[624]205class PngDrawer(Drawer):
[626]206
207    def scale_up(self):
208        self.width *= self.multi
209        self.height *= self.multi
210        self.w_margin *= self.multi
211        self.h_margin *= self.multi
212        self.h_no_margs *= self.multi
213        self.w_no_margs *= self.multi
214
215    def scale_down(self):
216        self.width /= self.multi
217        self.height /= self.multi
218        self.w_margin /= self.multi
219        self.h_margin /= self.multi
220        self.h_no_margs /= self.multi
221        self.w_no_margs /= self.multi
222
223    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
[624]224        print("Drawing...")
[564]225
[626]226        self.multi=multi
227        self.scale_up()
228
[624]229        back = Image.new('RGBA', (self.width, self.height), (255,255,255,0))
[562]230
[624]231        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
232        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
233        max_height = max([x['y'] for x in self.design.positions if 'y' in x])
[562]234
[624]235        self.draw_lines(back, min_width, max_width, max_height)
236        self.draw_dots(back, min_width, max_width, max_height)
[562]237
[624]238        if scale == "SIMPLE":
239            self.draw_scale(back, input_filename)
[564]240
[626]241        #back.show()
242        self.scale_down()
243
244        back.thumbnail((self.width, self.height), Image.ANTIALIAS)
245
[624]246        back.save(filename)
[562]247
[624]248    def add_dot(self, file, pos, style):
249        x, y = int(pos[0]), int(pos[1])
[626]250        r = style['r']*self.multi
[624]251        offset = (int(x - r), int(y - r))
252        size = (2*int(r), 2*int(r))
[622]253
[624]254        c = style['color']
[572]255
[624]256        img = Image.new('RGBA', size)
257        ImageDraw.Draw(img).ellipse((1, 1, size[0]-1, size[1]-1),
258                                    (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])))
259        file.paste(img, offset, mask=img)
[572]260
[624]261    def add_line(self, file, from_pos, to_pos, style):
262        fx, fy, tx, ty = int(from_pos[0]), int(from_pos[1]), int(to_pos[0]), int(to_pos[1])
[626]263        w = int(style['width'])*self.multi
[562]264
[624]265        offset = (min(fx-w, tx-w), min(fy-w, ty-w))
266        size = (abs(fx-tx)+2*w, abs(fy-ty)+2*w)
[700]267        if size[0] == 0 or size[1] == 0:
268            return
[577]269
[624]270        c = style['color']
[622]271
[624]272        img = Image.new('RGBA', size)
273        ImageDraw.Draw(img).line((w, w, size[0]-w, size[1]-w) if (fx-tx)*(fy-ty)>0 else (size[0]-w, w, w, size[1]-w),
[626]274                                  (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])), w)
[624]275        file.paste(img, offset, mask=img)
[562]276
[624]277    def add_dashed_line(self, file, from_pos, to_pos):
278        style = {'color': (0,0,0), 'width': 1, 'opacity': 1}
279        sublines = 50
280        # TODO could be faster: compute delta and only add delta each time (but currently we do not use it often)
[684]281        normdiv = 2*sublines-1
[624]282        for i in range(sublines):
[684]283            from_pos_sub = (self.compute_value(from_pos[0], to_pos[0], 2*i/normdiv, 1),
284                            self.compute_value(from_pos[1], to_pos[1], 2*i/normdiv, 1))
285            to_pos_sub = (self.compute_value(from_pos[0], to_pos[0], (2*i+1)/normdiv, 1),
286                          self.compute_value(from_pos[1], to_pos[1], (2*i+1)/normdiv, 1))
[624]287            self.add_line(file, from_pos_sub, to_pos_sub, style)
[562]288
[624]289    def add_text(self, file, text, pos, anchor, style=''):
[626]290        font = ImageFont.truetype("Vera.ttf", 16*self.multi)
[621]291
[624]292        img = Image.new('RGBA', (self.width, self.height))
293        draw = ImageDraw.Draw(img)
294        txtsize = draw.textsize(text, font=font)
[626]295        pos = pos if anchor == "start" else (pos[0]-txtsize[0], pos[1])
[624]296        draw.text(pos, text, (0,0,0), font=font)
297        file.paste(img, (0,0), mask=img)
[622]298
[624]299    def compute_line_style(self, parent, child):
300        return {'color': self.compute_property('lines', 'color', child),
301                'width': self.compute_property('lines', 'width', child),
302                'opacity': self.compute_property('lines', 'opacity', child)}
303
304    def compute_dot_style(self, node):
305        return {'color': self.compute_property('dots', 'color', node),
306                'r': self.compute_property('dots', 'size', node),
307                'opacity': self.compute_property('dots', 'opacity', node)}
308
309class SvgDrawer(Drawer):
[626]310    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
[624]311        print("Drawing...")
312        file = open(filename, "w")
313
314        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
315        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
316        max_height = max([x['y'] for x in self.design.positions if 'y' in x])
317
318        file.write('<svg xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" '
319                   'xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0" '
320                   'width="' + str(self.width) + '" height="' + str(self.height) + '">')
321
322        self.draw_lines(file, min_width, max_width, max_height)
323        self.draw_dots(file, min_width, max_width, max_height)
324
325        if scale == "SIMPLE":
326            self.draw_scale(file, input_filename)
327
328        file.write("</svg>")
329        file.close()
330
331    def add_text(self, file, text, pos, anchor, style=''):
332        style = (style if style != '' else 'style="font-family: Arial; font-size: 12; fill: #000000;"')
[628]333        # assuming font size 12, it should be taken from the style string!
334        file.write('<text ' + style + ' text-anchor="' + anchor + '" x="' + str(pos[0]) + '" y="' + str(pos[1]+12) + '" >' + text + '</text>')
[624]335
336    def add_dot(self, file, pos, style):
337        file.write('<circle ' + style + ' cx="' + str(pos[0]) + '" cy="' + str(pos[1]) + '" />')
338
339    def add_line(self, file, from_pos, to_pos, style):
340        file.write('<line ' + style + ' x1="' + str(from_pos[0]) + '" x2="' + str(to_pos[0]) +
341                       '" y1="' + str(from_pos[1]) + '" y2="' + str(to_pos[1]) + '"  fill="none"/>')
342
343    def add_dashed_line(self, file, from_pos, to_pos):
344        style = 'stroke="black" stroke-width="0.5" stroke-opacity="1" stroke-dasharray="5, 5"'
345        self.add_line(file, from_pos, to_pos, style)
346
347    def compute_line_style(self, parent, child):
348        return self.compute_stroke_color('lines', child) + ' ' \
349               + self.compute_stroke_width('lines', child) + ' ' \
350               + self.compute_stroke_opacity(child)
351
352    def compute_dot_style(self, node):
353        return self.compute_dot_size(node) + ' ' \
354               + self.compute_fill_opacity(node) + ' ' \
355               + self.compute_dot_fill(node)
356
357    def compute_stroke_color(self, part, node):
358        color = self.compute_property(part, 'color', node)
359        return 'stroke="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'
360
361    def compute_stroke_width(self, part, node):
362        return 'stroke-width="' + str(self.compute_property(part, 'width', node)) + '"'
363
364    def compute_stroke_opacity(self, node):
365        return 'stroke-opacity="' + str(self.compute_property('lines', 'opacity', node)) + '"'
366
367    def compute_fill_opacity(self, node):
368        return 'fill-opacity="' + str(self.compute_property('dots', 'opacity', node)) + '"'
369
370    def compute_dot_size(self, node):
371        return 'r="' + str(self.compute_property('dots', 'size', node)) + '"'
372
373    def compute_dot_fill(self, node):
374        color = self.compute_property('dots', 'color', node)
375        return 'fill="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'
376
377class Designer:
378
379    def __init__(self, tree, jitter=False, time="GENERATIONAL", balance="DENSITY"):
380        self.props = {}
381
382        self.tree = tree
383
384        self.TIME = time
385        self.JITTER = jitter
386
387        if balance == "RANDOM":
388            self.xmin_crowd = self.xmin_crowd_random
389        elif balance == "MIN":
390            self.xmin_crowd = self.xmin_crowd_min
391        elif balance == "DENSITY":
392            self.xmin_crowd = self.xmin_crowd_density
[562]393        else:
[624]394            raise ValueError("Error, the value of BALANCE does not match any expected value.")
[562]395
[624]396    def calculate_measures(self):
397        print("Calculating measures...")
[679]398        self.compute_depth()
[624]399        self.compute_adepth()
400        self.compute_children()
401        self.compute_kind()
402        self.compute_time()
[633]403        self.compute_progress()
[624]404        self.compute_custom()
[622]405
[624]406    def xmin_crowd_random(self, x1, x2, y):
407        return (x1 if random.randrange(2) == 0 else x2)
[562]408
[624]409    def xmin_crowd_min(self, x1, x2, y):
410        x1_closest = 999999
411        x2_closest = 999999
412        miny = y-3
413        maxy = y+3
414        i = bisect.bisect_left(self.y_sorted, miny)
415        while True:
416            if len(self.positions_sorted) <= i or self.positions_sorted[i]['y'] > maxy:
417                break
418            pos = self.positions_sorted[i]
[562]419
[624]420            x1_closest = min(x1_closest, abs(x1-pos['x']))
421            x2_closest = min(x2_closest, abs(x2-pos['x']))
[562]422
[624]423            i += 1
424        return (x1 if x1_closest > x2_closest else x2)
[562]425
[624]426    def xmin_crowd_density(self, x1, x2, y):
[690]427        # TODO experimental - requires further work to make it less 'jumpy' and more predictable
[694]428        CONST_LOCAL_AREA_RADIUS = 5
429        CONST_GLOBAL_AREA_RADIUS = 10
430        CONST_WINDOW_SIZE = 20000 #TODO should depend on the maxY ?
[690]431        x1_dist_loc = 0
432        x2_dist_loc = 0
433        count_loc = 1
434        x1_dist_glob = 0
435        x2_dist_glob = 0
436        count_glob = 1
[694]437        miny = y-CONST_WINDOW_SIZE
438        maxy = y+CONST_WINDOW_SIZE
[624]439        i_left = bisect.bisect_left(self.y_sorted, miny)
440        i_right = bisect.bisect_right(self.y_sorted, maxy)
[694]441        #TODO test: maxy=y should give the same results, right?
[562]442
[624]443        def include_pos(pos):
[690]444            nonlocal x1_dist_loc, x2_dist_loc, x1_dist_glob, x2_dist_glob, count_loc, count_glob
[562]445
[694]446            dysq = (pos['y']-y)**2 + 1 #+1 so 1/dysq is at most 1
447            dx1 = math.fabs(pos['x']-x1)
448            dx2 = math.fabs(pos['x']-x2)
449
[690]450            d = math.fabs(pos['x'] - (x1+x2)/2)
[623]451
[694]452            if d < CONST_LOCAL_AREA_RADIUS:
453                x1_dist_loc += math.sqrt(dx1/dysq + dx1**2)
454                x2_dist_loc += math.sqrt(dx2/dysq + dx2**2)
[690]455                count_loc += 1
[694]456            elif d > CONST_GLOBAL_AREA_RADIUS:
457                x1_dist_glob += math.sqrt(dx1/dysq + dx1**2)
458                x2_dist_glob += math.sqrt(dx2/dysq + dx2**2)
[690]459                count_glob += 1
460
[624]461        # optimized to draw from all the nodes, if less than 10 nodes in the range
462        if len(self.positions_sorted) > i_left:
463            if i_right - i_left < 10:
464                for j in range(i_left, i_right):
465                    include_pos(self.positions_sorted[j])
466            else:
467                for j in range(10):
468                    pos = self.positions_sorted[random.randrange(i_left, i_right)]
469                    include_pos(pos)
[562]470
[690]471        return (x1 if (x1_dist_loc-x2_dist_loc)/count_loc-(x1_dist_glob-x2_dist_glob)/count_glob > 0  else x2)
472        #return (x1 if x1_dist +random.gauss(0, 0.00001) > x2_dist +random.gauss(0, 0.00001)  else x2)
[624]473        #print(x1_dist, x2_dist)
474        #x1_dist = x1_dist**2
475        #x2_dist = x2_dist**2
476        #return x1 if x1_dist+x2_dist==0 else (x1*x1_dist + x2*x2_dist) / (x1_dist+x2_dist) + random.gauss(0, 0.01)
477        #return (x1 if random.randint(0, int(x1_dist+x2_dist)) < x1_dist else x2)
[571]478
[624]479    def calculate_node_positions(self, ignore_last=0):
480        print("Calculating positions...")
[562]481
[624]482        def add_node(node):
483            index = bisect.bisect_left(self.y_sorted, node['y'])
484            self.y_sorted.insert(index, node['y'])
485            self.positions_sorted.insert(index, node)
486            self.positions[node['id']] = node
[572]487
[624]488        self.positions_sorted = [{'x':0, 'y':0, 'id':0}]
489        self.y_sorted = [0]
490        self.positions = [{} for x in range(len(self.tree.parents))]
491        self.positions[0] = {'x':0, 'y':0, 'id':0}
[572]492
[677]493        # order by maximum depth of the parent guarantees that co child is evaluated before its parent
494        visiting_order = [i for i in range(0, len(self.tree.parents))]
495        visiting_order = sorted(visiting_order, key=lambda q:
496                            0 if q == 0 else max([self.props["depth"][d] for d in self.tree.parents[q]]))
[562]497
[624]498        start_time = timelib.time()
[566]499
[677]500        # for each child of the current node
[686]501        for node_counter,child in enumerate(visiting_order, start=1):
[677]502            # debug info - elapsed time
[685]503            if node_counter % 100000 == 0:
504               print("%d%%\t%d\t%g" % (node_counter*100/len(self.tree.parents), node_counter, timelib.time()-start_time))
[677]505               start_time = timelib.time()
[562]506
[677]507            # using normalized adepth
508            if self.props['adepth'][child] >= ignore_last/self.props['adepth_max']:
[621]509
[677]510                ypos = 0
511                if self.TIME == "BIRTHS":
512                    ypos = child
513                elif self.TIME == "GENERATIONAL":
514                    # one more than its parent (what if more than one parent?)
[680]515                    ypos = max([self.positions[par]['y'] for par, v in self.tree.parents[child].items()])+1 \
516                        if self.tree.parents[child] else 0
[677]517                elif self.TIME == "REAL":
518                    ypos = self.tree.time[child]
[621]519
[677]520                if len(self.tree.parents[child]) == 1:
521                # if current_node is the only parent
[687]522                    parent, similarity = [(par, v) for par, v in self.tree.parents[child].items()][0]
[621]523
[677]524                    if self.JITTER:
[690]525                        dissimilarity = (1-similarity) + random.gauss(0, 0.01) + 0.001
[621]526                    else:
[687]527                        dissimilarity = (1-similarity) + 0.001
[677]528                    add_node({'id':child, 'y':ypos, 'x':
529                             self.xmin_crowd(self.positions[parent]['x']-dissimilarity,
530                              self.positions[parent]['x']+dissimilarity, ypos)})
531                else:
532                    # position weighted by the degree of inheritence from each parent
533                    total_inheretance = sum([v for k, v in self.tree.parents[child].items()])
534                    xpos = sum([self.positions[k]['x']*v/total_inheretance
535                               for k, v in self.tree.parents[child].items()])
536                    if self.JITTER:
537                        add_node({'id':child, 'y':ypos, 'x':xpos + random.gauss(0, 0.1)})
538                    else:
539                        add_node({'id':child, 'y':ypos, 'x':xpos})
[621]540
541
[624]542    def compute_custom(self):
543        for prop in self.tree.props:
544            self.props[prop] = [None for x in range(len(self.tree.children))]
[621]545
[624]546            for i in range(len(self.props[prop])):
547                self.props[prop][i] = self.tree.props[prop][i]
[621]548
[624]549            self.normalize_prop(prop)
[562]550
[624]551    def compute_time(self):
552        # simple rewrite from the tree
553        self.props["time"] = [0 for x in range(len(self.tree.children))]
[562]554
[624]555        for i in range(len(self.props['time'])):
556            self.props['time'][i] = self.tree.time[i]
[572]557
[624]558        self.normalize_prop('time')
[617]559
[624]560    def compute_kind(self):
561        # simple rewrite from the tree
562        self.props["kind"] = [0 for x in range(len(self.tree.children))]
[617]563
[624]564        for i in range (len(self.props['kind'])):
565            self.props['kind'][i] = str(self.tree.kind[i])
[617]566
[624]567    def compute_depth(self):
568        self.props["depth"] = [999999999 for x in range(len(self.tree.children))]
[681]569        visited = [0 for x in range(len(self.tree.children))]
[617]570
[624]571        nodes_to_visit = [0]
[681]572        visited[0] = 1
[624]573        self.props["depth"][0] = 0
574        while True:
[681]575            current_node = nodes_to_visit[0]
[682]576
[681]577            for child in self.tree.children[current_node]:
578                if visited[child] == 0:
579                    visited[child] = 1
580                    nodes_to_visit.append(child)
581                    self.props["depth"][child] = self.props["depth"][current_node]+1
[624]582            nodes_to_visit = nodes_to_visit[1:]
583            if len(nodes_to_visit) == 0:
584                break
[617]585
[624]586        self.normalize_prop('depth')
[617]587
[624]588    def compute_adepth(self):
589        self.props["adepth"] = [0 for x in range(len(self.tree.children))]
[617]590
[679]591        # order by maximum depth of the parent guarantees that co child is evaluated before its parent
592        visiting_order = [i for i in range(0, len(self.tree.parents))]
593        visiting_order = sorted(visiting_order, key=lambda q:
594                            0 if q == 0 else max([self.props["depth"][d] for d in self.tree.parents[q]]))[::-1]
[617]595
[679]596        for node in visiting_order:
597            children = self.tree.children[node]
598            if len(children) != 0:
599                # 0 by default
600                self.props["adepth"][node] = max([self.props["adepth"][child] for child in children])+1
[624]601        self.normalize_prop('adepth')
[594]602
[624]603    def compute_children(self):
604        self.props["children"] = [0 for x in range(len(self.tree.children))]
605        for i in range (len(self.props['children'])):
606            self.props['children'][i] = len(self.tree.children[i])
[562]607
[624]608        self.normalize_prop('children')
[564]609
[633]610    def compute_progress(self):
611        self.props["progress"] = [0 for x in range(len(self.tree.children))]
612        for i in range(len(self.props['children'])):
613            times = sorted([self.props["time"][self.tree.children[i][j]]*100000 for j in range(len(self.tree.children[i]))])
614            if len(times) > 4:
615                times = [times[i+1] - times[i] for i in range(len(times)-1)]
616                #print(times)
617                slope, intercept, r_value, p_value, std_err = stats.linregress(range(len(times)), times)
618                self.props['progress'][i] = slope if not np.isnan(slope) and not np.isinf(slope) else 0
619
620        for i in range(0, 5):
621            self.props['progress'][self.props['progress'].index(min(self.props['progress']))] = 0
622            self.props['progress'][self.props['progress'].index(max(self.props['progress']))] = 0
623
624        mini = min(self.props['progress'])
625        maxi = max(self.props['progress'])
626        for k in range(len(self.props['progress'])):
627            if self.props['progress'][k] == 0:
628                self.props['progress'][k] = mini
629
630        #for k in range(len(self.props['progress'])):
631        #        self.props['progress'][k] = 1-self.props['progress'][k]
632
633        self.normalize_prop('progress')
634
[624]635    def normalize_prop(self, prop):
[678]636        noneless = [v for v in self.props[prop] if (type(v)!=str and type(v)!=list)]
[624]637        if len(noneless) > 0:
638            max_val = max(noneless)
639            min_val = min(noneless)
[697]640            print("%s: [%g, %g]" % (prop, min_val, max_val))
[624]641            self.props[prop +'_max'] = max_val
642            self.props[prop +'_min'] = min_val
643            for i in range(len(self.props[prop])):
644                if self.props[prop][i] is not None:
[633]645                    qqq = self.props[prop][i]
646                    self.props[prop][i] = 0 if max_val == min_val else (self.props[prop][i] - min_val) / (max_val - min_val)
[594]647
[624]648class TreeData:
649    simple_data = None
[615]650
[624]651    children = []
652    parents = []
653    time = []
654    kind = []
[562]655
[624]656    def __init__(self): #, simple_data=False):
657        #self.simple_data = simple_data
658        pass
[562]659
[624]660    def load(self, filename, max_nodes=0):
661        print("Loading...")
[576]662
[624]663        CLI_PREFIX = "Script.Message:"
664        default_props = ["Time", "FromIDs", "ID", "Operation", "Inherited"]
[576]665
[633]666        self.ids = {}
[628]667        def get_id(id, createOnError = True):
668            if createOnError:
[633]669                if id not in self.ids:
670                    self.ids[id] = len(self.ids)
[628]671            else:
[633]672                if id not in self.ids:
[628]673                    return None
[633]674            return self.ids[id]
[576]675
[624]676        file = open(filename)
[576]677
[624]678        # counting the number of expected nodes
679        nodes = 0
680        for line in file:
681            line_arr = line.split(' ', 1)
682            if len(line_arr) == 2:
683                if line_arr[0] == CLI_PREFIX:
684                    line_arr = line_arr[1].split(' ', 1)
685                if line_arr[0] == "[OFFSPRING]":
686                    nodes += 1
[562]687
[624]688        nodes = min(nodes, max_nodes if max_nodes != 0 else nodes)+1
689        self.parents = [{} for x in range(nodes)]
690        self.children = [[] for x in range(nodes)]
691        self.time = [0] * nodes
692        self.kind = [0] * nodes
[628]693        self.life_lenght = [0] * nodes
[624]694        self.props = {}
[562]695
[688]696        print("nodes: %d" % len(self.parents))
[562]697
[624]698        file.seek(0)
699        loaded_so_far = 0
700        lasttime = timelib.time()
701        for line in file:
702            line_arr = line.split(' ', 1)
703            if len(line_arr) == 2:
704                if line_arr[0] == CLI_PREFIX:
705                    line_arr = line_arr[1].split(' ', 1)
706                if line_arr[0] == "[OFFSPRING]":
[682]707                    try:
708                        creature = json.loads(line_arr[1])
709                    except ValueError:
710                        print("Json format error - the line cannot be read. Breaking the loading loop.")
711                        # fixing arrays by removing the last element
712                        # ! assuming that only the last line is broken !
713                        self.parents.pop()
714                        self.children.pop()
715                        self.time.pop()
716                        self.kind.pop()
717                        self.life_lenght.pop()
718                        nodes -= 1
719                        break
720
[624]721                    if "FromIDs" in creature:
[562]722
[624]723                        # make sure that ID's of parents are lower than that of their children
724                        for i in range(0, len(creature["FromIDs"])):
[633]725                            if creature["FromIDs"][i] not in self.ids:
[627]726                                get_id("virtual_parent")
[562]727
[624]728                        creature_id = get_id(creature["ID"])
729
730                        # debug
731                        if loaded_so_far%1000 == 0:
732                            #print(". " + str(creature_id) + " " + str(timelib.time() - lasttime))
733                            lasttime = timelib.time()
734
735                        # we assign to each parent its contribution to the genotype of the child
736                        for i in range(0, len(creature["FromIDs"])):
[633]737                            if creature["FromIDs"][i] in self.ids:
[627]738                                parent_id = get_id(creature["FromIDs"][i])
739                            else:
740                                parent_id = get_id("virtual_parent")
[687]741                            inherited = (creature["Inherited"][i] if 'Inherited' in creature else 1)
[624]742                            self.parents[creature_id][parent_id] = inherited
743
744                        if "Time" in creature:
745                            self.time[creature_id] = creature["Time"]
746
747                        if "Kind" in creature:
748                            self.kind[creature_id] = creature["Kind"]
749
750                        for prop in creature:
751                            if prop not in default_props:
752                                if prop not in self.props:
[628]753                                    self.props[prop] = [0 for i in range(nodes)]
[624]754                                self.props[prop][creature_id] = creature[prop]
755
756                        loaded_so_far += 1
757                    else:
758                        raise LoadingError("[OFFSPRING] misses the 'FromIDs' field!")
[628]759                if line_arr[0] == "[DIED]":
760                    creature = json.loads(line_arr[1])
761                    creature_id = get_id(creature["ID"], False)
762                    if creature_id is not None:
763                        for prop in creature:
764                            if prop not in default_props:
765                                if prop not in self.props:
766                                    self.props[prop] = [0 for i in range(nodes)]
767                                self.props[prop][creature_id] = creature[prop]
[624]768
[628]769
[624]770            if loaded_so_far >= max_nodes and max_nodes != 0:
771                break
772
773        for k in range(len(self.parents)):
774            v = self.parents[k]
775            for val in self.parents[k]:
776                self.children[val].append(k)
777
[562]778depth = {}
[577]779kind = {}
[562]780
781def main():
782
[624]783    parser = argparse.ArgumentParser(description='Draws a genealogical tree (generates a SVG file) based on parent-child relationship '
784                                                 'information from a text file. Supports files generated by Framsticks experiments.')
[615]785    parser.add_argument('-i', '--in', dest='input', required=True, help='input file name with stuctured evolutionary data')
[624]786    parser.add_argument('-o', '--out', dest='output', required=True, help='output file name for the evolutionary tree (SVG/PNG/JPG/BMP)')
787    parser.add_argument('-c', '--config', dest='config', default="", help='config file name ')
[562]788
[624]789    parser.add_argument('-W', '--width', default=600, type=int, dest='width', help='width of the output image (600 by default)')
[626]790    parser.add_argument('-H', '--height', default=800, type=int, dest='height', help='height of the output image (800 by default)')
791    parser.add_argument('-m', '--multi', default=1, type=int, dest='multi', help='multisampling factor (applicable only for raster images)')
[562]792
[620]793    parser.add_argument('-t', '--time', default='GENERATIONAL', dest='time', help='values on vertical axis (BIRTHS/GENERATIONAL(d)/REAL); '
[614]794                                                                      'BIRTHS: time measured as the number of births since the beginning; '
[571]795                                                                      'GENERATIONAL: time measured as number of ancestors; '
796                                                                      'REAL: real time of the simulation')
[620]797    parser.add_argument('-b', '--balance', default='DENSITY', dest='balance', help='method of placing nodes in the tree (RANDOM/MIN/DENSITY(d))')
[624]798    parser.add_argument('-s', '--scale', default='SIMPLE', dest='scale', help='type of timescale added to the tree (NONE(d)/SIMPLE)')
[571]799    parser.add_argument('-j', '--jitter', dest="jitter", action='store_true', help='draw horizontal positions of children from the normal distribution')
[624]800    parser.add_argument('-p', '--skip', dest="skip", type=int, default=0, help='skip last P levels of the tree (0 by default)')
801    parser.add_argument('-x', '--max-nodes', type=int, default=0, dest='max_nodes', help='maximum number of nodes drawn (starting from the first one)')
[562]802    parser.add_argument('--seed', type=int, dest='seed', help='seed for the random number generator (-1 for random)')
803
804    parser.set_defaults(draw_tree=True)
805    parser.set_defaults(draw_skeleton=False)
806    parser.set_defaults(draw_spine=False)
807
808    parser.set_defaults(seed=-1)
809
810    args = parser.parse_args()
811
[620]812    TIME = args.time.upper()
813    BALANCE = args.balance.upper()
814    SCALE = args.scale.upper()
[571]815    JITTER = args.jitter
[620]816    if not TIME in ['BIRTHS', 'GENERATIONAL', 'REAL']\
817        or not BALANCE in ['RANDOM', 'MIN', 'DENSITY']\
818        or not SCALE in ['NONE', 'SIMPLE']:
[683]819        print("Incorrect value of one of the parameters! (time or balance or scale).") #user has to figure out which parameter is wrong...
[620]820        return
[562]821
822    dir = args.input
823    seed = args.seed
824    if seed == -1:
825        seed = random.randint(0, 10000)
826    random.seed(seed)
[689]827    print("randomseed:", seed)
[562]828
[624]829    tree = TreeData()
830    tree.load(dir, max_nodes=args.max_nodes)
[562]831
[682]832
[624]833    designer = Designer(tree, jitter=JITTER, time=TIME, balance=BALANCE)
834    designer.calculate_measures()
835    designer.calculate_node_positions(ignore_last=args.skip)
[562]836
[624]837    if args.output.endswith(".svg"):
838        drawer = SvgDrawer(designer, args.config, w=args.width, h=args.height)
839    else:
840        drawer = PngDrawer(designer, args.config, w=args.width, h=args.height)
[626]841    drawer.draw_design(args.output, args.input, multi=args.multi, scale=SCALE)
[562]842
843
844main()
Note: See TracBrowser for help on using the repository browser.