source: framspy/FramsticksLib.py

Last change on this file was 1306, checked in by Maciej Komosinski, 106 minutes ago

Introduced symbolic names for dissimilarity estimation methods

File size: 22.7 KB
Line 
1from typing import List  # to be able to specify a type hint of list(something)
2from enum import Enum, auto, unique
3import json
4import sys, os
5import argparse
6import numpy as np
7import frams
8
9
10@unique
11class DissimMethod(Enum):  # values assigned to fields are irrelevant, hence auto()
12        GENE_LEVENSHTEIN = auto()  # genetic Levenshtein distance
13        PHENE_STRUCT_GREEDY = auto()  # phenetic, graph structure, fast but approximate
14        PHENE_STRUCT_OPTIM = auto()  # phenetic, graph structure, slower for complex creatures but optimal
15        PHENE_DESCRIPTORS = auto()  # phenetic, shape descriptors
16        PHENE_DENSITY_COUNT = auto()  # phenetic, density distribution, count of samples
17        PHENE_DENSITY_FREQ = auto()  # phenetic, density distribution, frequency of count of samples
18        FITNESS = auto()  # fitness value
19
20
21
22class FramsticksLib:
23        """Communicates directly with Framsticks library (.dll or .so or .dylib).
24        You can perform basic operations like mutation, crossover, and evaluation of genotypes.
25        This way you can perform evolution controlled by python as well as access and manipulate genotypes.
26        You can even design and use in evolution your own genetic representation implemented entirely in python,
27        or access and control the simulation and simulated creatures step by step.
28
29        Should you want to modify or extend this class, first see and test the examples in frams-test.py.
30
31        You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so/.dylib resides
32        and, optionally, the name of the Framsticks dll/so/dylib (if it is non-standard). See::
33                FramsticksLib.py -h"""
34
35        PRINT_FRAMSTICKS_OUTPUT: bool = False  # set to True for debugging
36        DETERMINISTIC: bool = False  # set to True to have the same results in each run
37
38        GENOTYPE_INVALID = "/*invalid*/"  # this is how genotype invalidity is represented in Framsticks
39        EVALUATION_SETTINGS_FILE = [  # all files MUST be compatible with the standard-eval expdef. The order they are loaded in is important!
40                "eval-allcriteria.sim",  # a good trade-off in performance sampling period ("perfperiod") for vertpos and velocity
41                # "deterministic.sim",  # turns off random noise (added for robustness) so that each evaluation yields identical performance values (causes "overfitting")
42                # "sample-period-2.sim", # short performance sampling period so performance (e.g. vertical position) is sampled more often
43                # "sample-period-longest.sim",  # increased performance sampling period so distance and velocity are measured rectilinearly
44        ]
45
46
47        # This function is not needed because in Python, "For efficiency reasons, each module is only imported once per interpreter session."
48        # @staticmethod
49        # def getFramsModuleInstance():
50        #       """If some other party needs access to the frams module to directly access or modify Framsticks objects,
51        #       use this function to avoid importing the "frams" module multiple times and avoid potentially initializing
52        #       it many times."""
53        #       return frams
54
55        def __init__(self, frams_path, frams_lib_name, sim_settings_files):
56                self.dissim_measure_density_distribution = None  # will be initialized only when necessary (for rare dissimilarity methods)
57
58                if frams_lib_name is None:
59                        frams.init(frams_path)  # could add support for setting alternative directories using -D and -d
60                else:
61                        frams.init(frams_path, "-L" + frams_lib_name)  # could add support for setting alternative directories using -D and -d
62
63                print('Available objects:', dir(frams))
64                print()
65
66                simplest = self.getSimplest("1")
67                if not (simplest == "X" and type(simplest) is str):
68                        raise RuntimeError('Failed getSimplest() test.')
69                if not (self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False]):
70                        raise RuntimeError('Failed isValid() test.')
71
72                if not self.DETERMINISTIC:
73                        frams.Math.randomize()
74                frams.Simulator.expdef = "standard-eval"  # this expdef (or fully compatible) must be used by EVALUATION_SETTINGS_FILE
75                if sim_settings_files is not None:
76                        self.EVALUATION_SETTINGS_FILE = sim_settings_files.split(";")  # override defaults. str becomes list
77                print('Basic tests OK. Using settings:', self.EVALUATION_SETTINGS_FILE)
78                print()
79
80                for simfile in self.EVALUATION_SETTINGS_FILE:
81                        ec = frams.MessageCatcher.new()  # catch potential errors, warnings, messages - just to detect if there are ERRORs
82                        ec.store = 2  # store all, because they are caught by MessageCatcher and will not appear in output (which we want)
83                        frams.Simulator.ximport(simfile, 4 + 8 + 16)
84                        ec.close()
85                        print(ec.messages)  # output all caught messages
86                        if ec.error_count._value() > 0:
87                                raise ValueError("Problem while importing file '%s'" % simfile)  # make missing files or incorrect paths fatal because error messages are easy to overlook in output, and these errors would not prevent Framsticks simulator from performing genetic operations, starting and running in evaluate()
88
89
90        def getSimplest(self, genetic_format: str) -> str:
91                return frams.GenMan.getSimplest(genetic_format).genotype._string()
92
93
94        def getPJNC(self, genotype: str):
95                """
96                Returns the number of elements of a phenotype built from the provided genotype (without any simulation).
97
98                :param genotype: the genotype to assess
99                :return: a tuple of (numparts,numjoints,numneurons,numconnections) or None if the genotype is invalid.
100                """
101                model = frams.Model.newFromString(genotype)
102                if model.is_valid._int() == 0:
103                        return None
104                return (model.numparts._int(), model.numjoints._int(), model.numneurons._int(), model.numconnections._int())
105
106
107        def satisfiesConstraints(self, genotype: str, max_numparts: int, max_numjoints: int, max_numneurons: int, max_numconnections: int, max_numgenochars: int) -> bool:
108                """
109                Verifies if the genotype satisfies complexity constraints without actually simulating it.
110                For example, if the genotype represents a phenotype with 1000 Parts, it will be much faster to check it using this function than to simulate the resulting creature using evaluate() only to learn that the number of its Parts exceeds your defined limit.
111
112                :param genotype: the genotype to check
113                :return: False if any constraint is violated or the genotype is invalid, else True. The constraint value of None means no constraint.
114                """
115
116
117                def value_within_constraint(actual_value, constraint_value):
118                        if constraint_value is not None:
119                                if actual_value > constraint_value:
120                                        return False
121                        return True
122
123
124                PJNC = self.getPJNC(genotype)
125                if PJNC is None:
126                        return False  # Let's treat invalid genotypes as not satisfying constraints
127                P, J, N, C = PJNC
128
129                valid = True
130                valid &= value_within_constraint(len(genotype), max_numgenochars)
131                valid &= value_within_constraint(P, max_numparts)
132                valid &= value_within_constraint(J, max_numjoints)
133                valid &= value_within_constraint(N, max_numneurons)
134                valid &= value_within_constraint(C, max_numconnections)
135                return valid
136
137
138        def evaluate(self, genotype_list: List[str]):
139                """
140                Returns:
141                        List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE.
142                        Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or
143                        partially empty and may not have the fields you expected, so handle such cases properly.
144                """
145                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
146
147                if not self.PRINT_FRAMSTICKS_OUTPUT:
148                        ec = frams.MessageCatcher.new()  # mute potential errors, warnings, messages
149                        ec.store = 2  # store all, because they are caught by MessageCatcher and will not appear in output
150
151                frams.GenePools[0].clear()
152                for g in genotype_list:
153                        frams.GenePools[0].add(g)
154                frams.ExpProperties.evalsavefile = ""  # no need to store results in a file - we will get evaluations directly from Genotype's "data" field
155                frams.Simulator.init()
156                frams.Simulator.start()
157
158                # step = frams.Simulator.step  # cache reference to avoid repeated lookup in the loop (just for performance)
159                # while frams.Simulator.running._int():  # standard-eval.expdef sets running to 0 when the evaluation is complete
160                #       step()
161                frams.Simulator.eval("while(Simulator.running) Simulator.step();")  # fastest
162                # Timing for evaluating a single simple creature 100x:
163                # - python step without caching: 2.2s
164                # - python step with caching   : 1.6s
165                # - pure FramScript and eval() : 0.4s
166
167                if not self.PRINT_FRAMSTICKS_OUTPUT:
168                        ec.close()
169                        if ec.error_count._value() > 0:
170                                print(ec.messages)  # if errors occurred, output all caught messages for debugging
171                                raise RuntimeError("[ERROR] %d error(s) and %d warning(s) while evaluating %d genotype(s)" % (ec.error_count._value(), ec.warning_count._value(), len(genotype_list)))  # make errors fatal; by default they stop the simulation anyway so let's not use potentially incorrect or partial results and fix the cause first.
172
173                results = []
174                for g in frams.GenePools[0]:
175                        serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()])
176                        evaluations = json.loads(serialized_dict._string())  # Framsticks native ExtValue's get converted to native python types such as int, float, list, str.
177                        # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does.
178                        result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations}
179                        results.append(result)
180
181                return results
182
183
184        def mutate(self, genotype_list: List[str]) -> List[str]:
185                """
186                Returns:
187                        The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid).
188                """
189                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
190
191                mutated = []
192                for g in genotype_list:
193                        mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string())
194                if len(genotype_list) != len(mutated):
195                        raise RuntimeError("Submitted %d genotypes, received %d mutants" % (len(genotype_list), len(mutated)))
196                return mutated
197
198
199        def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str:
200                """
201                Returns:
202                        The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed.
203                """
204                return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string()
205
206
207        def dissimilarity(self, genotype_list: List[str], method: DissimMethod) -> np.ndarray:
208                """
209                        :param method, see DissimMethod.
210                        :return: A square array with dissimilarities of each pair of genotypes.
211                """
212                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
213
214                # if you want to override what EVALUATION_SETTINGS_FILE sets, you can do it below:
215                # frams.SimilMeasureHungarian.simil_partgeom = 1
216                # frams.SimilMeasureHungarian.simil_weightedMDS = 1
217
218                n = len(genotype_list)
219                square_matrix = np.zeros((n, n))
220
221                if method in (DissimMethod.PHENE_STRUCT_GREEDY, DissimMethod.PHENE_STRUCT_OPTIM, DissimMethod.PHENE_DESCRIPTORS):  # Framsticks phenetic dissimilarity methods
222                        frams.SimilMeasure.simil_type = 0 if method == DissimMethod.PHENE_STRUCT_GREEDY else 1 if method == DissimMethod.PHENE_STRUCT_OPTIM else 2
223                        genos = []  # prepare an array of Geno objects so that we don't need to convert raw strings to Geno objects all the time in loops
224                        for g in genotype_list:
225                                genos.append(frams.Geno.newFromString(g))
226                        frams_evaluateDistance = frams.SimilMeasure.evaluateDistance  # cache function reference for better performance in loops
227                        for i in range(n):
228                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
229                                        square_matrix[i][j] = frams_evaluateDistance(genos[i], genos[j])._double()
230                elif method == DissimMethod.GENE_LEVENSHTEIN:
231                        import Levenshtein
232                        for i in range(n):
233                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
234                                        square_matrix[i][j] = Levenshtein.distance(genotype_list[i], genotype_list[j])
235                elif method in (DissimMethod.PHENE_DENSITY_COUNT, DissimMethod.PHENE_DENSITY_FREQ):
236                        if self.dissim_measure_density_distribution is None:
237                                from dissimilarity.density_distribution import DensityDistribution
238                                self.dissim_measure_density_distribution = DensityDistribution(frams)
239                        self.dissim_measure_density_distribution.frequency = (method == DissimMethod.PHENE_DENSITY_FREQ)
240                        square_matrix = self.dissim_measure_density_distribution.getDissimilarityMatrix(genotype_list)
241                else:
242                        raise ValueError("Don't know what to do with dissimilarity method = %s" % method)
243
244                for i in range(n):
245                        assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0"
246                non_symmetric_diff = square_matrix - square_matrix.T
247                non_symmetric_count = np.count_nonzero(non_symmetric_diff)
248                if non_symmetric_count > 0:
249                        non_symmetric_diff_abs = np.abs(non_symmetric_diff)
250                        max_pos1d = np.argmax(non_symmetric_diff_abs)  # location of the largest discrepancy
251                        max_pos2d_XY = np.unravel_index(max_pos1d, non_symmetric_diff_abs.shape)  # 2D coordinates of the largest discrepancy
252                        max_pos2d_YX = max_pos2d_XY[1], max_pos2d_XY[0]  # 2D coordinates of the largest discrepancy mirror
253                        worst_guy_XY = square_matrix[max_pos2d_XY]  # this distance and the other below (its mirror) are most different
254                        worst_guy_YX = square_matrix[max_pos2d_YX]
255                        print("[WARN] Dissimilarity matrix: expecting symmetry, but %g out of %d pairs were asymmetrical, max difference was %g (%g %%)" %
256                              (non_symmetric_count / 2,
257                               n * (n - 1) / 2,
258                               non_symmetric_diff_abs[max_pos2d_XY],
259                               non_symmetric_diff_abs[max_pos2d_XY] * 100 / ((worst_guy_XY + worst_guy_YX) / 2)))  # max diff is not necessarily max %
260                return square_matrix
261
262
263        def getRandomGenotype(self, initial_genotype: str, parts_min: int, parts_max: int, neurons_min: int, neurons_max: int, iter_max: int, return_even_if_failed: bool):
264                """
265                Some algorithms require a "random solution". To this end, this method generates a random framstick genotype.
266
267                :param initial_genotype: if not a specific genotype (which could facilitate greater variability of returned genotypes), try `getSimplest(format)`.
268                :param iter_max: how many mutations can be used to generate a random genotype that fullfills target numbers of parts and neurons.
269                :param return_even_if_failed: if the target numbers of parts and neurons was not achieved, return the closest genotype that was found? Set it to False first to experimentally adjust `iter_max` so that in most calls this function returns a genotype with target numbers of parts and neurons, and then you can set this parameter to True if target numbers of parts and neurons are not absolutely required.
270                :returns: a valid genotype or None if failed and `return_even_if_failed` is False.
271                """
272
273
274                def estimate_diff(g: str):
275                        if not self.isValidCreature([g])[0]:
276                                return None, None
277                        m = frams.Model.newFromString(g)
278                        numparts = m.numparts._value()
279                        numneurons = m.numneurons._value()
280                        diff_parts = abs(target_parts - numparts)
281                        diff_neurons = abs(target_neurons - numneurons)
282                        in_target_range = (parts_min <= numparts <= parts_max) and (neurons_min <= numneurons <= neurons_max)  # less demanding than precisely reaching target_parts and target_neurons
283                        return diff_parts + diff_neurons, in_target_range
284
285
286                # try to find a genotype that matches the number of parts and neurons randomly selected from the provided min..max range
287                # (even if we fail to match this precise target, the goal will be achieved if the found genotype manages to be within min..max ranges for parts and neurons)
288                target_parts = np.random.default_rng().integers(parts_min, parts_max + 1)
289                target_neurons = np.random.default_rng().integers(neurons_min, neurons_max + 1)
290
291                if not self.isValidCreature([initial_genotype])[0]:
292                        raise ValueError("Initial genotype '%s' is invalid" % initial_genotype)
293
294                g = initial_genotype
295                for i in range(iter_max // 2):  # a sequence of iter_max/2 undirected mutations starting from initial_genotype
296                        g_new = self.mutate([g])[0]
297                        if self.isValidCreature([g_new])[0]:  # valid mutation
298                                g = g_new
299
300                best_diff, best_in_target_range = estimate_diff(g)
301                for i in range(iter_max // 2):  # a sequence of iter_max/2 mutations, only accepting those which approach target numbers of parts and neurons
302                        g_new = self.mutate([g])[0]
303                        diff, in_target_range = estimate_diff(g_new)
304                        if diff is not None and diff <= best_diff:  # valid mutation and better or as good as current
305                                g = g_new
306                                best_diff = diff
307                                best_in_target_range = in_target_range
308                # print(diff, best_diff) # print progress approaching target numbers of parts and neurons
309
310                if best_in_target_range or return_even_if_failed:
311                        return g  # best found so far (closest to target numbers of parts and neurons)
312                return None
313
314
315        def isValid(self, genotype_list: List[str]) -> List[bool]:
316                """
317                :returns: genetic validity (i.e., not based on trying to build creatures from provided genotypes). For a more thorough check, see isValidCreature().
318                """
319                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
320                valid = []
321                for g in genotype_list:
322                        valid.append(frams.Geno.newFromString(g).is_valid._int() == 1)
323                if len(genotype_list) != len(valid):
324                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
325                return valid
326
327
328        def isValidCreature(self, genotype_list: List[str]) -> List[bool]:
329                """
330                :returns: validity of the genotype when revived. Apart from genetic validity, this includes detecting problems that may arise when building a Creature from Genotype, such as multiple muscles of the same type in the same location in body, e.g. 'X[@][@]'.
331                """
332
333                # Genetic validity and simulator validity are two separate properties (in particular, genetic validity check is implemented by the author of a given genetic format and operators).
334                # Thus, the subset of genotypes valid genetically and valid in simulation may be overlapping.
335                # For example, 'X[]' or 'Xr' are considered invalid by the genetic checker, but the f1->f0 converter will ignore meaningless genes and produce a valid f0 genotype.
336                # On the other hand, 'X[@][@]' or 'X[|][|]' are valid genetically, but not possible to simulate.
337                # For simplicity of usage (so that one does not need to check both properties separately using both functions), let's make one validity a subset of the other.
338                # The genetic check in the first lines of the "for" loop makes this function at least as demanding as isValid().
339
340                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
341
342                pop = frams.Populations[0]  # assuming rules from population #0 (self-colision settings are population-dependent and can influence creature build success/failure)
343
344                valid = []
345                for g in genotype_list:
346                        if frams.Geno.newFromString(g).is_valid._int() != 1:
347                                valid.append(False)  # invalid according to genetic check
348                        else:
349                                can_add = pop.canAdd(g, 1, 1)  # First "1" means to treat warnings during build as build failures - this allows detecting problems when building Creature from Genotype. Second "1" means mute emitted errors, warnings, messages. Returns 1 (ok, could add) or 0 (there were some problems building Creature from Genotype)
350                                valid.append(can_add._int() == 1)
351
352                if len(genotype_list) != len(valid):
353                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
354                return valid
355
356
357def parseArguments():
358        parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0])
359        parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so or .dylib) without trailing slash.')
360        parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" (or .so or .dylib) is assumed depending on the platform.')
361        parser.add_argument('-simsettings', required=False, help="The name of the .sim file with settings for evaluation, mutation, crossover, and similarity estimation. If not given, \"eval-allcriteria.sim\" is assumed by default. Must be compatible with the \"standard-eval\" expdef. If you want to provide more files, separate them with a semicolon ';'.")
362        parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.')
363        return parser.parse_args()
364
365
366def ensureDir(string):
367        if os.path.isdir(string):
368                return string
369        else:
370                raise NotADirectoryError(string)
371
372
373if __name__ == "__main__":
374        # A demo run.
375
376        # TODO ideas:
377        # - check_validity with three levels (invalid, corrected, valid)
378        # - a pool of binaries running simultaneously, balance load - in particular evaluation
379
380        parsed_args = parseArguments()
381        framsLib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.simsettings)
382
383        print("Sending a direct command to Framsticks library that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;"))
384
385        simplest = framsLib.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat)
386        print("\tSimplest genotype:", simplest)
387        parent1 = framsLib.mutate([simplest])[0]
388        parent2 = parent1
389        MUTATE_COUNT = 10
390        for x in range(MUTATE_COUNT):  # example of a chain of 10 mutations
391                parent2 = framsLib.mutate([parent2])[0]
392        print("\tParent1 (mutated simplest):", parent1)
393        print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2)
394        offspring = framsLib.crossOver(parent1, parent2)
395        print("\tCrossover (Offspring):", offspring)
396        print('\tDissimilarity of Parent1 and Offspring:', framsLib.dissimilarity([parent1, offspring], DissimMethod.PHENE_STRUCT_OPTIM)[0, 1])
397        print('\tPerformance of Offspring:', framsLib.evaluate([offspring]))
398        print('\tValidity (genetic) of Parent1, Parent 2, and Offspring:', framsLib.isValid([parent1, parent2, offspring]))
399        print('\tValidity (simulation) of Parent1, Parent 2, and Offspring:', framsLib.isValidCreature([parent1, parent2, offspring]))
400        print('\tValidity (constraints) of Offspring:', framsLib.satisfiesConstraints(offspring, 2, None, 5, 10, None))
401        print('\tRandom genotype:', framsLib.getRandomGenotype(simplest, 2, 6, 2, 4, 100, True))
Note: See TracBrowser for help on using the repository browser.