Last change
on this file was
1290,
checked in by Maciej Komosinski, 16 months ago
|
Better mutation, crossover, and evaluation function for a simple minimalistic numerical optimization example
|
File size:
609 bytes
|
Line | |
---|
1 | import numpy as np |
---|
2 | |
---|
3 | from ..base.experiment_abc import ExperimentABC |
---|
4 | |
---|
5 | |
---|
6 | class ExperimentNumerical(ExperimentABC): |
---|
7 | def __init__(self, hof_size, popsize, save_only_best) -> None: |
---|
8 | ExperimentABC.__init__(self,popsize=popsize, |
---|
9 | hof_size=hof_size, |
---|
10 | save_only_best=save_only_best) |
---|
11 | |
---|
12 | def mutate(self, gen): |
---|
13 | return gen + np.random.normal(0, 15, len(gen)) |
---|
14 | |
---|
15 | def cross_over(self, gen1, gen2): |
---|
16 | a = np.random.uniform() |
---|
17 | return a * gen1 + (1.0-a) * gen2 |
---|
18 | |
---|
19 | def evaluate(self, gen): |
---|
20 | return -sum([x*x for x in gen]) |
---|
Note: See
TracBrowser
for help on using the repository browser.