source: framspy/FramsticksLib.py @ 1219

Last change on this file since 1219 was 1218, checked in by Maciej Komosinski, 2 years ago

Added a function that checks if a genotype produces a valid Creature (with no warnings) and a function that generates random genotypes respecting constraints

File size: 19.3 KB
Line 
1from typing import List  # to be able to specify a type hint of list(something)
2import json
3import sys, os
4import argparse
5import numpy as np
6import frams
7
8
9class FramsticksLib:
10        """Communicates directly with Framsticks library (.dll or .so or .dylib).
11        You can perform basic operations like mutation, crossover, and evaluation of genotypes.
12        This way you can perform evolution controlled by python as well as access and manipulate genotypes.
13        You can even design and use in evolution your own genetic representation implemented entirely in python,
14        or access and control the simulation and simulated creatures step by step.
15
16        Should you want to modify or extend this class, first see and test the examples in frams-test.py.
17
18        You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so/.dylib resides
19        and, optionally, the name of the Framsticks dll/so/dylib (if it is non-standard). See::
20                FramsticksLib.py -h"""
21
22        PRINT_FRAMSTICKS_OUTPUT: bool = False  # set to True for debugging
23        DETERMINISTIC: bool = False  # set to True to have the same results in each run
24
25        GENOTYPE_INVALID = "/*invalid*/"  # this is how genotype invalidity is represented in Framsticks
26        EVALUATION_SETTINGS_FILE = [  # all files MUST be compatible with the standard-eval expdef. The order they are loaded in is important!
27                "eval-allcriteria.sim",  # a good trade-off in performance sampling period ("perfperiod") for vertpos and velocity
28                # "deterministic.sim",  # turns off random noise (added for robustness) so that each evaluation yields identical performance values (causes "overfitting")
29                # "sample-period-2.sim", # short performance sampling period so performance (e.g. vertical position) is sampled more often
30                # "sample-period-longest.sim",  # increased performance sampling period so distance and velocity are measured rectilinearly
31        ]
32
33
34        # This function is not needed because in Python, "For efficiency reasons, each module is only imported once per interpreter session."
35        # @staticmethod
36        # def getFramsModuleInstance():
37        #       """If some other party needs access to the frams module to directly access or modify Framsticks objects,
38        #       use this function to avoid importing the "frams" module multiple times and avoid potentially initializing
39        #       it many times."""
40        #       return frams
41
42        def __init__(self, frams_path, frams_lib_name, sim_settings_files):
43                if frams_lib_name is None:
44                        frams.init(frams_path)  # could add support for setting alternative directories using -D and -d
45                else:
46                        frams.init(frams_path, "-L" + frams_lib_name)  # could add support for setting alternative directories using -D and -d
47
48                print('Available objects:', dir(frams))
49                print()
50
51                simplest = self.getSimplest("1")
52                if not (simplest == "X" and type(simplest) is str):
53                        raise RuntimeError('Failed getSimplest() test.')
54                if not (self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False]):
55                        raise RuntimeError('Failed isValid() test.')
56
57                if not self.DETERMINISTIC:
58                        frams.Math.randomize()
59                frams.Simulator.expdef = "standard-eval"  # this expdef (or fully compatible) must be used by EVALUATION_SETTINGS_FILE
60                if sim_settings_files is not None:
61                        self.EVALUATION_SETTINGS_FILE = sim_settings_files.split(";")  # override defaults. str becomes list
62                print('Basic tests OK. Using settings:', self.EVALUATION_SETTINGS_FILE)
63                print()
64
65                for simfile in self.EVALUATION_SETTINGS_FILE:
66                        ec = frams.MessageCatcher.new()  # catch potential errors, warnings, messages - just to detect if there are ERRORs
67                        ec.store = 2;  # store all, because they are caught by MessageCatcher and will not appear in output (which we want)
68                        frams.Simulator.ximport(simfile, 4 + 8 + 16)
69                        ec.close()
70                        print(ec.messages)  # output all caught messages
71                        if ec.error_count._value() > 0:
72                                raise ValueError("Problem while importing file '%s'" % simfile)  # make missing files or incorrect paths fatal because error messages are easy to overlook in output, and these errors would not prevent Framsticks simulator from performing genetic operations, starting and running in evaluate()
73
74
75        def getSimplest(self, genetic_format) -> str:
76                return frams.GenMan.getSimplest(genetic_format).genotype._string()
77
78
79        def evaluate(self, genotype_list: List[str]):
80                """
81                Returns:
82                        List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE.
83                        Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or
84                        partially empty and may not have the fields you expected, so handle such cases properly.
85                """
86                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
87
88                if not self.PRINT_FRAMSTICKS_OUTPUT:
89                        ec = frams.MessageCatcher.new()  # mute potential errors, warnings, messages
90                        ec.store = 2;  # store all, because they are caught by MessageCatcher and will not appear in output
91
92                frams.GenePools[0].clear()
93                for g in genotype_list:
94                        frams.GenePools[0].add(g)
95                frams.ExpProperties.evalsavefile = ""  # no need to store results in a file - we will get evaluations directly from Genotype's "data" field
96                frams.Simulator.init()
97                frams.Simulator.start()
98
99                # step = frams.Simulator.step  # cache reference to avoid repeated lookup in the loop (just for performance)
100                # while frams.Simulator.running._int():  # standard-eval.expdef sets running to 0 when the evaluation is complete
101                #       step()
102                frams.Simulator.eval("while(Simulator.running) Simulator.step();")  # fastest
103                # Timing for evaluating a single simple creature 100x:
104                # - python step without caching: 2.2s
105                # - python step with caching   : 1.6s
106                # - pure FramScript and eval() : 0.4s
107
108                if not self.PRINT_FRAMSTICKS_OUTPUT:
109                        ec.close()
110                        if ec.error_count._value() > 0:
111                                print(ec.messages)  # if errors occurred, output all caught messages for debugging
112                                raise RuntimeError("[ERROR] %d error(s) and %d warning(s) while evaluating %d genotype(s)" % (ec.error_count._value(), ec.warning_count._value(), len(genotype_list)))  # make errors fatal; by default they stop the simulation anyway so let's not use potentially incorrect or partial results and fix the cause first.
113
114                results = []
115                for g in frams.GenePools[0]:
116                        serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()])
117                        evaluations = json.loads(serialized_dict._string())  # Framsticks native ExtValue's get converted to native python types such as int, float, list, str.
118                        # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does.
119                        result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations}
120                        results.append(result)
121
122                return results
123
124
125        def mutate(self, genotype_list: List[str]) -> List[str]:
126                """
127                Returns:
128                        The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid).
129                """
130                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
131
132                mutated = []
133                for g in genotype_list:
134                        mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string())
135                if len(genotype_list) != len(mutated):
136                        raise RuntimeError("Submitted %d genotypes, received %d mutants" % (len(genotype_list), len(mutated)))
137                return mutated
138
139
140        def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str:
141                """
142                Returns:
143                        The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed.
144                """
145                return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string()
146
147
148        def dissimilarity(self, genotype_list: List[str], method: int) -> np.ndarray:
149                """
150                        :param method: -1 = genetic Levenshtein distance; 0, 1, 2 = phenetic dissimilarity (SimilMeasureGreedy, SimilMeasureHungarian, SimilMeasureDistribution)
151                        :return: A square array with dissimilarities of each pair of genotypes.
152                """
153                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
154
155                # if you want to override what EVALUATION_SETTINGS_FILE sets, you can do it below:
156                # frams.SimilMeasureHungarian.simil_partgeom = 1
157                # frams.SimilMeasureHungarian.simil_weightedMDS = 1
158
159                n = len(genotype_list)
160                square_matrix = np.zeros((n, n))
161
162                if method in (0, 1, 2):  # Framsticks phenetic dissimilarity methods
163                        frams.SimilMeasure.simil_type = method
164                        genos = []  # prepare an array of Geno objects so that we don't need to convert raw strings to Geno objects all the time in loops
165                        for g in genotype_list:
166                                genos.append(frams.Geno.newFromString(g))
167                        frams_evaluateDistance = frams.SimilMeasure.evaluateDistance  # cache function reference for better performance in loops
168                        for i in range(n):
169                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
170                                        square_matrix[i][j] = frams_evaluateDistance(genos[i], genos[j])._double()
171                elif method == -1:
172                        import Levenshtein
173                        for i in range(n):
174                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
175                                        square_matrix[i][j] = Levenshtein.distance(genotype_list[i], genotype_list[j])
176                else:
177                        raise Exception("Don't know what to do with dissimilarity method = %d" % method)
178
179                for i in range(n):
180                        assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0"
181                non_symmetric_diff = square_matrix - square_matrix.T
182                non_symmetric_count = np.count_nonzero(non_symmetric_diff)
183                if non_symmetric_count > 0:
184                        non_symmetric_diff_abs = np.abs(non_symmetric_diff)
185                        max_pos1d = np.argmax(non_symmetric_diff_abs)  # location of the largest discrepancy
186                        max_pos2d_XY = np.unravel_index(max_pos1d, non_symmetric_diff_abs.shape)  # 2D coordinates of the largest discrepancy
187                        max_pos2d_YX = max_pos2d_XY[1], max_pos2d_XY[0]  # 2D coordinates of the largest discrepancy mirror
188                        worst_guy_XY = square_matrix[max_pos2d_XY]  # this distance and the other below (its mirror) are most different
189                        worst_guy_YX = square_matrix[max_pos2d_YX]
190                        print("[WARN] Dissimilarity matrix: expecting symmetry, but %g out of %d pairs were asymmetrical, max difference was %g (%g %%)" %
191                              (non_symmetric_count / 2,
192                               n * (n - 1) / 2,
193                               non_symmetric_diff_abs[max_pos2d_XY],
194                               non_symmetric_diff_abs[max_pos2d_XY] * 100 / ((worst_guy_XY + worst_guy_YX) / 2)))  # max diff is not necessarily max %
195                return square_matrix
196
197
198        def getRandomGenotype(self, initial_genotype: str, parts_min: int, parts_max: int, neurons_min: int, neurons_max: int, iter_max: int, return_even_if_failed: bool):
199                """
200                Some algorithms require a "random solution". To this end, this method generates a random framstick genotype.
201
202                :param initial_genotype: if not a specific genotype (which could facilitate greater variability of returned genotypes), try `getSimplest(format)`.
203                :param iter_max: how many mutations can be used to generate a random genotype that fullfills target numbers of parts and neurons.
204                :param return_even_if_failed: if the target numbers of parts and neurons was not achieved, return the closest genotype that was found? Set it to False first to experimentally adjust `iter_max` so that in most calls this function returns a genotype with target numbers of parts and neurons, and then you can set this parameter to True if target numbers of parts and neurons are not absolutely required.
205                :returns: a valid genotype or None if failed and `return_even_if_failed` is False.
206                """
207
208
209                def estimate_diff(g: str):
210                        if not self.isValidCreature([g])[0]:
211                                return None, None
212                        m = frams.Model.newFromString(g)
213                        numparts = m.numparts._value()
214                        numneurons = m.numneurons._value()
215                        diff_parts = abs(target_parts - numparts)
216                        diff_neurons = abs(target_neurons - numneurons)
217                        in_target_range = (parts_min <= numparts <= parts_max) and (neurons_min <= numneurons <= neurons_max)  # less demanding than precisely reaching target_parts and target_neurons
218                        return diff_parts + diff_neurons, in_target_range
219
220
221                # try to find a genotype that matches the number of parts and neurons randomly selected from the provided min..max range
222                # (even if we fail to match this precise target, the goal will be achieved if the found genotype manages to be within min..max ranges for parts and neurons)
223                target_parts = np.random.default_rng().integers(parts_min, parts_max + 1)
224                target_neurons = np.random.default_rng().integers(neurons_min, neurons_max + 1)
225
226                if not self.isValidCreature([initial_genotype])[0]:
227                        raise ValueError("Initial genotype '%s' is invalid" % initial_genotype)
228
229                g = initial_genotype
230                for i in range(iter_max // 2):  # a sequence of iter_max/2 undirected mutations starting from initial_genotype
231                        g_new = self.mutate([g])[0]
232                        if self.isValidCreature([g_new])[0]:  # valid mutation
233                                g = g_new
234
235                best_diff, best_in_target_range = estimate_diff(g)
236                for i in range(iter_max // 2):  # a sequence of iter_max/2 mutations, only accepting those which approach target numbers of parts and neurons
237                        g_new = self.mutate([g])[0]
238                        diff, in_target_range = estimate_diff(g_new)
239                        if diff is not None and diff <= best_diff:  # valid mutation and better or as good as current
240                                g = g_new
241                                best_diff = diff
242                                best_in_target_range = in_target_range
243                # print(diff, best_diff) # print progress approaching target numbers of parts and neurons
244
245                if best_in_target_range or return_even_if_failed:
246                        return g  # best found so far (closest to target numbers of parts and neurons)
247                return None
248
249
250        def isValid(self, genotype_list: List[str]) -> List[bool]:
251                """
252                :returns: genetic validity (i.e., not based on trying to build creatures from provided genotypes). For a more thorough check, see isValidCreature().
253                """
254                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
255                valid = []
256                for g in genotype_list:
257                        valid.append(frams.Geno.newFromString(g).is_valid._int() == 1)
258                if len(genotype_list) != len(valid):
259                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
260                return valid
261
262
263        def isValidCreature(self, genotype_list: List[str]) -> List[bool]:
264                """
265                :returns: validity of the genotype when revived. Apart from genetic validity, this includes detecting problems that may arise when building a Creature from Genotype, such as multiple muscles of the same type in the same location in body, e.g. 'X[@][@]'.
266                """
267
268                # Genetic validity and simulator validity are two separate properties (in particular, genetic validity check is implemented by the author of a given genetic format and operators).
269                # Thus, the subset of genotypes valid genetically and valid in simulation may be overlapping.
270                # For example, 'X[]' or 'Xr' are considered invalid by the genetic checker, but the f1->f0 converter will ignore meaningless genes and produce a valid f0 genotype.
271                # On the other hand, 'X[@][@]' or 'X[|][|]' are valid genetically, but not possible to simulate.
272                # For simplicity of usage (so that one does not need to check both properties separately using both functions), let's make one validity a subset of the other.
273                # The genetic check in the first lines of the "for" loop makes this function at least as demanding as isValid().
274
275                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
276
277                pop = frams.Populations[0]  # assuming rules from population #0 (self-colision settings are population-dependent and can influence creature build success/failure)
278
279                valid = []
280                for g in genotype_list:
281                        if frams.Geno.newFromString(g).is_valid._int() != 1:
282                                valid.append(False)  # invalid according to genetic check
283                        else:
284                                can_add = pop.canAdd(g, 1, 1)  # First "1" means to treat warnings during build as build failures - this allows detecting problems when building Creature from Genotype. Second "1" means mute emitted errors, warnings, messages. Returns 1 (ok, could add) or 0 (there were some problems building Creature from Genotype)
285                                valid.append(can_add._int() == 1)
286
287                if len(genotype_list) != len(valid):
288                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
289                return valid
290
291
292def parseArguments():
293        parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0])
294        parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so or .dylib) without trailing slash.')
295        parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" (or .so or .dylib) is assumed depending on the platform.')
296        parser.add_argument('-simsettings', required=False, help="The name of the .sim file with settings for evaluation, mutation, crossover, and similarity estimation. If not given, \"eval-allcriteria.sim\" is assumed by default. Must be compatible with the \"standard-eval\" expdef. If you want to provide more files, separate them with a semicolon ';'.")
297        parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.')
298        return parser.parse_args()
299
300
301def ensureDir(string):
302        if os.path.isdir(string):
303                return string
304        else:
305                raise NotADirectoryError(string)
306
307
308if __name__ == "__main__":
309        # A demo run.
310
311        # TODO ideas:
312        # - check_validity with three levels (invalid, corrected, valid)
313        # - a pool of binaries running simultaneously, balance load - in particular evaluation
314
315        parsed_args = parseArguments()
316        framsLib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.simsettings)
317
318        print("Sending a direct command to Framsticks library that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;"))
319
320        simplest = framsLib.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat)
321        print("\tSimplest genotype:", simplest)
322        parent1 = framsLib.mutate([simplest])[0]
323        parent2 = parent1
324        MUTATE_COUNT = 10
325        for x in range(MUTATE_COUNT):  # example of a chain of 10 mutations
326                parent2 = framsLib.mutate([parent2])[0]
327        print("\tParent1 (mutated simplest):", parent1)
328        print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2)
329        offspring = framsLib.crossOver(parent1, parent2)
330        print("\tCrossover (Offspring):", offspring)
331        print('\tDissimilarity of Parent1 and Offspring:', framsLib.dissimilarity([parent1, offspring], 1)[0, 1])
332        print('\tPerformance of Offspring:', framsLib.evaluate([offspring]))
333        print('\tValidity (genetic) of Parent1, Parent 2, and Offspring:', framsLib.isValid([parent1, parent2, offspring]))
334        print('\tValidity (simulation) of Parent1, Parent 2, and Offspring:', framsLib.isValidCreature([parent1, parent2, offspring]))
335        print('\tRandom genotype:', framsLib.getRandomGenotype(simplest, 2, 6, 2, 4, 100, True))
Note: See TracBrowser for help on using the repository browser.