source: cpp/frams/model/similarity/measure-distribution.cpp @ 1054

Last change on this file since 1054 was 1054, checked in by Maciej Komosinski, 4 years ago

Proper paramtab group names for similarity measures

File size: 7.5 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2020  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5#include "measure-distribution.h"
6#include <common/nonstd_math.h>
7#include <limits>
8#include "EMD/emd.c"
9#include <iostream>
10
11#define FIELDSTRUCT SimilMeasureDistribution
12
13static ParamEntry simil_distribution_paramtab[] = {
14                { "Creature: Similarity: Descriptor distribution", 1, 4, "SimilMeasureDistribution", "Evaluates morphological dissimilarity using distribution measure.", },
15                { "simil_density", 0, 0, "Density of surface sampling", "f 1 100 10", FIELD(density), "", },
16                { "simil_bin_num", 0, 0, "Number of bins", "d 1 1000 128", FIELD(bin_num), "", },
17                { "simil_samples_num", 0, 0, "Number of samples", "d 1 1048576 1048576", FIELD(samples_num), "", },
18                { "evaluateDistance", 0, PARAM_DONTSAVE | PARAM_USERHIDDEN, "Evaluate model dissimilarity", "p f(oGeno,oGeno)", PROCEDURE(p_evaldistance), "Calculates dissimilarity between two models created from Geno objects.", },
19                { 0, },
20};
21
22#undef FIELDSTRUCT
23
24SimilMeasureDistribution::SimilMeasureDistribution() : localpar(simil_distribution_paramtab, this)
25{
26        localpar.setDefault();
27        SimilMeasureDistribution::distribution_fun = &SimilMeasureDistribution::D2; //D1 and D2 are the best descriptors
28}
29
30double SimilMeasureDistribution::getDistance()
31{
32        double dist = 0;
33        for (int i = 0; i < 2; i++)
34        {
35                funs[i] = new std::pair<double, float>[bin_num]();
36                for (int j = 0; j < bin_num; j++)
37                        funs[i][j] = std::make_pair(0, 0);
38        }
39       
40        for (int i = 0; i < 2; i++)
41                sst_models[i] = new SolidsShapeTypeModel((*models[i]));
42       
43        SimilMeasureDistribution::calculateFuns();     
44        dist = SimilMeasureDistribution::compareFuns();
45       
46        for (int i = 0; i < 2; i++)
47        {
48                SAFEDELETE(sst_models[i]);
49                SAFEDELETEARRAY(funs[i]);
50        }
51        return dist;
52}
53
54int SimilMeasureDistribution::setParams(std::vector<double> params)
55{
56        for (unsigned int i = 0; i < params.size(); i++)
57                if (params.at(i) <= 0)
58                {
59                        logPrintf("SimilDistributionMeasure", "setParams", LOG_ERROR, "Param values should be larger than 0.");
60                        return -1;
61                }
62       
63        density = params.at(0);
64        bin_num = params.at(1);
65        samples_num = params.at(2);
66       
67        return 0;
68}
69
70void SimilMeasureDistribution::calculateFun(std::pair<double, float> *fun, Model &sampled)
71{
72        int size = sampled.getPartCount();
73        int samples_taken = samples_num;
74
75        //Check if total number of points pairs is smaller than samples number
76        //but first, prevent exceeding int limits
77        if (size < (int) sqrt((double) std::numeric_limits<int>::max()))
78                samples_taken = min(samples_num, size*size);
79
80        //Get sampled distribution
81        std::vector<double> dist_vect = (this->*SimilMeasureDistribution::distribution_fun)(samples_taken, &sampled);
82
83        auto result = std::minmax_element(dist_vect.begin(), dist_vect.end());
84        double min = *result.first;
85        double max = *result.second;
86
87        //Create histogram
88        vector<float> hist(bin_num);
89        int ind = 0;
90
91        for (unsigned int j = 0; j < dist_vect.size(); j++)
92        {
93                ind = (int) std::floor((dist_vect.at(j)-min)*1/(max-min)*bin_num);
94                if (ind <= (bin_num-1))
95                        hist[ind] += 1;
96                else if (ind == bin_num)
97                        hist[bin_num-1] += 1;
98        }
99
100        //Create pairs
101        for (int j = 0; j < bin_num; j++)
102        {
103                fun[j] = std::make_pair(min+(max-min)/bin_num*(j+0.5), hist[j]);
104        }
105
106        //Normalize
107        float total_mass = 0;
108        for (int j = 0; j < bin_num; j++)
109    {
110        total_mass += fun[j].second;
111    }
112
113        for (int j = 0; j < bin_num; j++)
114                fun[j].second /= total_mass;
115}
116
117void SimilMeasureDistribution::calculateFuns()
118{
119        for (int i = 0; i < 2; i++)
120        {
121                Model sampled = SimilMeasureDistribution::sampleSurface(&sst_models[i]->getModel(), density);
122                SimilMeasureDistribution::calculateFun(funs[i], sampled);
123        }
124}
125
126double SimilMeasureDistribution::compareFuns()
127{
128        return SimilMeasureDistribution::EMD(funs[0], funs[1]);
129}
130
131vector<double> SimilMeasureDistribution::D1(int samples_taken, Model *sampled)
132{
133        vector<double> dist_vect;
134        int size = sampled->getPartCount();
135        double x = 0;
136        double y = 0;
137        double z = 0;
138       
139        for (int i = 0; i < size; i++)
140        {
141                Pt3D pos = sampled->getPart(i)->p;
142                x += pos.x;
143                y += pos.y;
144                z += pos.z;
145        }
146       
147        x = x/size;
148        y = y/size;
149        z = z/size;
150       
151        Pt3D centroid = {x, y, z};
152       
153        for (int i = 0; i < samples_taken; i++)
154        {
155                int p1 = rndUint(size);
156                double dist = sampled->getPart(p1)->p.distanceTo(centroid);
157                if (dist > 0)
158                        dist_vect.push_back(dist);
159        }
160       
161        return dist_vect;
162}
163
164vector<double> SimilMeasureDistribution::D2(int samples_taken, Model *sampled)
165{
166        vector<double> dist_vect;
167        int size = sampled->getPartCount();
168        for (int i = 0; i < samples_taken; i++)
169        {
170                int p1 = rndUint(size);
171                int p2 = rndUint(size);
172                double dist = sampled->getPart(p1)->p.distanceTo(sampled->getPart(p2)->p);
173                if (dist > 0)
174                        dist_vect.push_back(dist);
175        }
176       
177        return dist_vect;
178}
179
180vector<double> SimilMeasureDistribution::D3(int samples_taken, Model *sampled)
181{
182        vector<double> dist_vect;
183        int size = sampled->getPartCount();
184        for (int i = 0; i < samples_taken; i++)
185        {
186                int p1 = rndUint(size);
187                int p2 = rndUint(size);
188                int p3 = rndUint(size);
189               
190                Pt3D v(sampled->getPart(p2)->p);
191                Pt3D w(sampled->getPart(p3)->p);
192                v -= sampled->getPart(p1)->p;
193                w -= sampled->getPart(p1)->p;
194                Pt3D cross_prod(0);
195                cross_prod.vectorProduct(v, w);
196               
197                double dist = 0.5 * cross_prod.length();
198                if (dist > 0)
199                        dist_vect.push_back(dist);
200        }
201       
202        return dist_vect;
203}
204
205vector<double> SimilMeasureDistribution::D4(int samples_taken, Model *sampled)
206{
207        vector<double> dist_vect;
208        int size = sampled->getPartCount();
209        for (int i = 0; i < samples_taken; i++)
210        {
211                int a = rndUint(size);
212                int b = rndUint(size);
213                int c = rndUint(size);
214                int d = rndUint(size);
215               
216                Pt3D ad(sampled->getPart(a)->p);
217                Pt3D bd(sampled->getPart(b)->p);
218                Pt3D cd(sampled->getPart(c)->p);
219               
220                ad -= sampled->getPart(d)->p;
221                bd -= sampled->getPart(d)->p;
222                cd -= sampled->getPart(d)->p;
223               
224                Pt3D cross_prod(0);
225                cross_prod.vectorProduct(bd, cd);
226                cross_prod.entrywiseProduct(ad);
227               
228                double dist = cross_prod.length()/6;
229                if (dist > 0)
230                        dist_vect.push_back(dist);
231        }
232       
233        return dist_vect;
234}
235
236vector<double> SimilMeasureDistribution::A3(int samples_taken, Model *sampled)
237{
238        vector<double> dist_vect;
239        int size = sampled->getPartCount();
240        for (int i = 0; i < samples_taken; i++)
241        {
242                int p1 = rndUint(size);
243                int p2 = rndUint(size);
244                int p3 = rndUint(size);
245                double a = sampled->getPart(p1)->p.distanceTo(sampled->getPart(p3)->p);
246                double b = sampled->getPart(p3)->p.distanceTo(sampled->getPart(p2)->p);
247                double c = sampled->getPart(p1)->p.distanceTo(sampled->getPart(p2)->p);
248                double beta = acos((a*a + b*b - c*c)/(2*a*b));
249       
250                if (!std::isnan(beta))
251                        dist_vect.push_back(beta);
252        }
253       
254        return dist_vect;
255}
256
257
258float dist(feature_t* F1, feature_t* F2)
259{
260        return abs((*F1)-(*F2));
261}
262
263
264void SimilMeasureDistribution::fillPointsWeights(std::pair<double, float> *fun, feature_t *points, float *weights)
265{
266        for (int j = 0; j < bin_num; j++)
267        {
268                points[j] = {fun[j].first};
269                weights[j] = fun[j].second;
270        }
271}
272
273double SimilMeasureDistribution::EMD(std::pair<double, float> *fun1, std::pair<double, float> *fun2)
274{
275        feature_t *points[2];
276        float *weights[2];
277       
278        for (int i = 0; i < 2; i++)
279        {
280                points[i] = new feature_t[bin_num];
281                weights[i] = new float[bin_num]();
282        }
283        SimilMeasureDistribution::fillPointsWeights(fun1, points[0], weights[0]);
284        SimilMeasureDistribution::fillPointsWeights(fun2, points[1], weights[1]);
285       
286        signature_t sig1 = {bin_num, points[0], weights[0]},
287        sig2 = {bin_num, points[1], weights[1]};
288
289        float e = emd(&sig1, &sig2, dist, 0, 0);
290       
291        for (int i = 0; i < 2; i++)
292        {
293                delete[] points[i];
294                delete[] weights[i];
295        }
296
297        return e;
298}
Note: See TracBrowser for help on using the repository browser.