// This file is a part of Framsticks SDK. http://www.framsticks.com/ // Copyright (C) 1999-2019 Maciej Komosinski and Szymon Ulatowski. // See LICENSE.txt for details. #ifndef _2D_H_ #define _2D_H_ #include "nonstd_stl.h" #include //unification of old GUIXY and Pt2D template class XY { public: T x, y; XY() {} XY(T _x, T _y) :x(_x), y(_y) {} template XY(const Q& other) : x(other.x), y(other.y) {} template const XY& operator=(const Q& other) { x = other.x; y = other.y; return *this; } template const XY operator()(const Q& other) { return XY(other.x, other.y); } XY operator+(const XY&p) const { return XY(x + p.x, y + p.y); } XY operator-(const XY&p) const { return XY(x - p.x, y - p.y); } XY operator+=(const XY&p) { x += p.x; y += p.y; return *this; } XY operator-=(const XY&p) { x -= p.x; y -= p.y; return *this; } XY operator-() const { return XY(-x, -y); } // allows float operations on ints template XY operator*=(Q q) { x *= q; y *= q; return *this; } template XY operator/=(Q q) { x /= q; y /= q; return *this; } template XY operator/(Q q) const { return XY(x / q, y / q); } template XY operator*(Q q) const { return XY(q*x, q*y); } XY operator*=(const XY& q) { x *= q.x; y *= q.y; return *this; } XY operator/=(const XY& q) { x /= q.x; y /= q.y; return *this; } XY operator*(const XY& q) const { return XY(x*q.x, y*q.y); } XY operator/(const XY& q) const { return XY(x/q.x, y/q.y); } void set(T _x, T _y) { x = _x; y = _y; } void add(T _x, T _y) { x += _x; y += _y; } void sub(T _x, T _y) { x -= _x; y -= _y; } bool operator==(const XY& p) const { return (fabs(double(x - p.x)) < 1e-20) && (fabs(double(y - p.y)) < 1e-20); } bool operator!=(const XY& p) const { return !operator==(p); } T distanceTo(const XY& p) const { return sqrt(double((p.x - x)*(p.x - x) + (p.y - y)*(p.y - y))); } T magnitude() const { return sqrt(x*x + y * y); } T length() const { return sqrt(x*x + y * y); } T lengthSq() const { return x * x + y * y; } T dotProduct(const XY& v) const { return x * v.x + y * v.y; } T crossProduct(const XY& v) const { return x * v.y - y * v.x; } void normalize() { operator/=(length()); } // length becomes 1 static XY average(const XY& v1, const XY& v2) { return XY((v1.x + v2.x)*0.5, (v1.y + v2.y)*0.5); } double getDirection() const { return atan2(y, x); } static XY interpolate(const XY& v1, const XY& v2, double t) { return universal_lerp(v1,v2,t); } XY toInt() const { return XY(int(x), int(y)); } XY transpose() const { return XY(y, x); } static const XY& zero() { static XY t(0, 0); return t; } static const XY& one() { static XY t(1, 1); return t; } }; //specialized: int equality not using fabs() template<> inline bool XY::operator==(const XY& p) const { return (x == p.x) && (y == p.y); } template XY xymin(const XY& a, const XY& b) { return XY(min(a.x, b.x), min(a.y, b.y)); } template XY xymax(const XY& a, const XY& b) { return XY(max(a.x, b.x), max(a.y, b.y)); } template class XYMargin { public: XYMargin(T x = 0) :left(x), top(x), right(x), bottom(x) {} XYMargin(T l, T t, T r, T b) :left(l), top(t), right(r), bottom(b) {} T left, top, right, bottom; void operator=(T x) { left = top = right = bottom = x; } XYMargin operator-() const { return XYMargin(-left, -top, -right, -bottom); } void operator=(const XYMargin &other) { left = other.left; top = other.top; right = other.right; bottom = other.bottom; } T horizontal() const { return left + right; } T vertical() const { return top + bottom; } bool operator==(const XYMargin &other) const { return left == other.left && top == other.top && right == other.right && bottom == other.bottom; } XYMargin normalized() const { return XYMargin(max(left, T(0)), max(top, T(0)), max(right, T(0)), max(bottom, T(0))); } }; template class XYRect { public: XY p, size; XYRect() {} XYRect(const XY& p1, const XY& s) :p(p1), size(s) {} template XYRect(const Q& other) : p(other.p), size(other.size) {} XYRect(T _x, T _y, T _w, T _h) :p(_x, _y), size(_w, _h) {} static XYRect centeredAt(const XY& p, XY s) { return XYRect(p - s * 0.5, s); } bool isEmpty() const { return (size.x < 0) || (size.y < 0); } XYRect toInt() const { return XYRect(int(p.x), int(p.y), int(p.x + size.x) - int(p.x), int(p.y + size.y) - int(p.y)); } bool operator==(const XYRect& r) const { return (p == r.p) && (size == r.size); } template const XYRect& operator=(const Q& other) { p = other.p; size = other.size; return *this; } T right() const { return p.x + size.x; } T bottom() const { return p.y + size.y; } T top() const { return p.y; } T left() const { return p.x; } XY center() const { return p + size / 2; } const XY& topLeft() const { return p; } XY bottomRight() const { return p + size; } XY topRight() const { return XY(p.x + size.x, p.y); } XY bottomLeft() const { return XY(p.x, p.y + size.y); } T area() const { return size.x*size.y; } bool intersects(const XYRect& r) const { if (r.p.x >= (p.x + size.x)) return false; if (r.p.y >= (p.y + size.y)) return false; if ((r.p.x + r.size.x) <= p.x) return false; if ((r.p.y + r.size.y) <= p.y) return false; return true; } bool contains(const XY& n) const { if (n.x < p.x) return false; if (n.x > (p.x + size.x)) return false; if (n.y < p.y) return false; if (n.y > (p.y + size.y)) return false; return true; } bool contains(const XYRect& r) const { return contains(r.p) && contains(r.p + r.size); } void add(const XY& n) { if (n.x < p.x) { size.x += p.x - n.x; p.x = n.x; } else if (n.x > (p.x + size.x)) size.x = n.x - p.x; if (n.y < p.y) { size.y += p.y - n.y; p.y = n.y; } else if (n.y > (p.y + size.y)) size.y = n.y - p.y; } XYRect extendBy(const XY& border_size) const { return XYRect(p - border_size, size + border_size * 2); } XYRect shrinkBy(const XY& border_size) const { return XYRect(p + border_size, size - border_size * 2); } XYRect extendBy(const XYMargin& m) const { return XYRect(p.x - m.left, p.y - m.top, size.x + m.horizontal(), size.y + m.vertical()); } XYRect shrinkBy(const XYMargin& m) const { return XYRect(p.x + m.left, p.y + m.top, size.x - m.horizontal(), size.y - m.vertical()); } XYMargin marginTowards(const XYRect &r) const { return XYMargin(r.p.x - p.x, r.p.y - p.y, (p.x + size.x) - (r.p.x + r.size.x), (p.y + size.y) - (r.p.y + r.size.y)); } XYRect fitAspect(float aspect) ///< place a new rectangle having 'aspect' inside the rectangle { XYRect r; r.size=size; if (size.x < size.y*aspect) r.size.y = r.size.x/aspect; else r.size.x = r.size.y*aspect; r.p=p+(size-r.size)*0.5; return r; } XYRect intersection(const XYRect& r) const { XYRect i; XY p2 = p + size; XY rp2 = r.p + r.size; i.p.x = max(p.x, r.p.x); i.p.y = max(p.y, r.p.y); i.size.x = min(p2.x, rp2.x) - i.p.x; i.size.y = min(p2.y, rp2.y) - i.p.y; return i; } XYRect extensionContaining(const XYRect& r) const { XY p1 = xymin(topLeft(), r.topLeft()); XY p2 = xymax(bottomRight(), r.bottomRight()); return XYRect(p1, p2 - p1); } XYRect translation(const XY& t) const { return XYRect(p + t, size); } T distanceTo(const XY& n) const { XY tp = n; if (n.x < p.x) tp.x = p.x; else if (n.x >= (p.x + size.x)) tp.x = p.x + size.x; if (n.y < p.y) tp.y = p.y; else if (n.y >= (p.y + size.y)) tp.y = p.y + size.y; return tp.distanceTo(n); } T distanceTo(const XYRect& r) const { bool r_above = (r.bottom() <= top()); bool r_below = (r.top() >= bottom()); bool r_left = (r.right() <= left()); bool r_right = (r.left() >= right()); if (r_above) { if (r_left) return r.bottomRight().distanceTo(topLeft()); else if (r_right) return r.bottomLeft().distanceTo(topRight()); else return top() - r.bottom(); } else if (r_below) { if (r_left) return r.topRight().distanceTo(bottomLeft()); else if (r_right) return r.topLeft().distanceTo(bottomRight()); else return r.top() - bottom(); } else if (r_left) { return left() - r.right(); } else if (r_right) { return r.left() - right(); } else return 0; //intersection } static const XYRect& zero() { static XYRect t(0, 0, 0, 0); return t; } static const XYRect& one() { static XYRect t(0, 0, 1, 1); return t; } }; typedef XY IntXY; typedef XYRect IntRect; typedef XY FloatXY; typedef XYRect FloatRect; #endif