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Abstract. One of the problems that single-threaded (non-parallel) evo-
lutionary algorithms encounter is premature convergence and the lack
of diversity in the population. To counteract this problem and improve
the performance of evolutionary algorithms in terms of the quality of
optimized solutions, a new subpopulation-based selection scheme – the
convection selection – is introduced and analyzed in this work. This new
selection scheme is compared against traditional selection of individuals
in a single-population evolutionary processes. The experimental results
indicate that the use of subpopulations with fitness-based assignment
of individuals yields better results than both random assignment and a
traditional, non-parallel evolutionary architecture.

Keywords: evolutionary algorithms, selection scheme, convection selection, di-
versity, exploration

1 Introduction

A selection scheme is one of the most important elements of evolutionary algo-
rithms [2,6,14]. Not only it determines the selective pressure in the population,
but it also controls the distribution of this pressure among all individuals. Over
the years many selection schemes were proposed, some of the most popular ones
being tournament selection [3,13], ranking selection [4], proportional selection [7]
and sigma scaling [1]. A common element for all of them is the monotonicity of
the probability of selection with respect to fitness – a sensible property in opti-
mization, since better individuals deserve a higher chance of propagating their
genes. In this paper we show that a more complex, non-monotonic selection
scheme can improve the performance of evolutionary algorithms.

In a recent paper [11], Komosinski proposed two methods of dividing the
population into subpopulations based only on fitness values of individuals, which
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does not require computation of any additional, potentially complex and time-
consuming, similarity measures. The performance gain obtained by these meth-
ods has been verified experimentally in a parallel setting (hence it was a distri-
bution technique). The paper discussed the logic behind this way of splitting of
the population and provided some explanations on why it was beneficial. This
population-splitting scheme was called the convection distribution because it
facilitates continuous evolutionary progress just like a convection current or a
conveyor belt: each subpopulation always tries to independently improve geno-
types of a specific fitness range which overall ensures more fitness diversity and
avoids the domination of (and the convergence towards) the current globally best
genotypes [5]. Occasional, short ascending trends (convections) are visible in the
entire range of fitness values. As mentioned in [11], this idea can be directly
implemented in a standard, single-threaded (i.e., non-parallel) evolutionary al-
gorithm, where it becomes the convection selection scheme.

It is known that given the same computational cost, parallel evolutionary
algorithms [18,16,12] can sometimes yield better results in optimization tasks
than standard sequential evolutionary algorithms, mostly because of the local
exchange of individuals between independent subpopulations. Local exchange
of individuals leads to increased exploration of the search space, which is often
desirable [16]. Increased exploration can also be achieved in sequential evolu-
tionary optimization using methods such as sharing or restricted mating [15].
Such methods require however calculating of additional measures of similarity
between individuals, which may be time consuming, especially in applications
where individuals are complex [11], such as evolutionary design or artificial life.

Convection selection techniques may be perceived as super-selection tech-
niques in that they determine which individual should be assigned to which sub-
population, yet within these subpopulations traditional selection schemes are still
employed. Thus convection selection can be combined with any traditional selec-
tion method, constituting convection tournament selection, convection roulette
selection, etc. Moreover, while in this work we will discuss one-level convection
selection (i.e., a population divided into sub-populations), this technique can act
on multiple levels with subpopulations recursively embedded in each other.

The experiments reported in [11] proved that convection distribution meth-
ods yielded significantly better results than random distribution of genotypes
among subpopulations. In this work, we investigate when the convection selec-
tion (assigning individuals to subpopulations based on fitness values) can yield
better results compared to standard, single-population positive selection schemes
such as tournament selection. We also analyze the underlying mechanisms re-
sponsible for the success of this new approach.

Apart from implementing three subpopulation-based selection techniques in a
single-threaded (non-parallel) evolutionary algorithm and comparing their per-
formance, we also compare these three approaches against a standard, single-
population evolutionary algorithm. In all comparisons we ensure that the overall
computational cost is the same – in each evolutionary run, we keep the num-
ber of evaluations of individuals equal, and the computational cost of managing
subpopulations and migrations between subpopulations is negligible. Moreover,



we test each of the four mentioned approaches (Fig. 1) using various selective
pressures and populations sizes, and for each approach we choose the best per-
formance among its various parametrizations to ensure a fair comparison.

2 Methods

All the experiments described in this paper were performed using Framsticks
software [10,9]. Framsticks allows to evolve bodies and brains of 3D designs
(agents) towards a goal specified by some fitness function. This area of applica-
tion of evolutionary algorithms benefits the most from selection schemes that im-
prove the performance yet are still computationally inexpensive. This is because
optimization tasks in evolutionary design are extremely difficult and solutions
are very complex due to sophisticated genotype-to-phenotype mappings, so cal-
culating sophisticated properties of such solutions or estimating their similarity
is usually very costly and should be avoided if possible.

We have used two fitness functions that differ in the difficulty of optimization:
velocity and height. The velocity criterion is used to evolve individuals that
move fast on land (so body and brain are coevolved and must be coordinated),
whereas height is used to evolve static tall structures (their neural network is
disabled) with the center of mass as elevated as possible.

The “f1” genetic encoding was employed [8,9]. This encoding is a direct
mapping between symbols and parts of a 3D structure: ‘X’ represents a rod (a
stick), parentheses encode branches in the structure, and additional characters
influence properties like length or rotation. Neurons are described in square
brackets and index numbers in their connections are relative, so the information
about connections is local and persists when a part of a genotype is cut out. The
encoding is able to represent tree-like 3D body structures and neural networks of
arbitrary topology. Mutations modify individual aspects of the agent by adding
or removing parentheses in random locations in the genotype, by adding and
removing random symbols that affect the structure, by adding and removing
neurons and connections, and by adding random Gaussian-distributed values to
neural weights.

For both fitness functions, evolution was started from the simplest individual
(i.e., ‘X’ in the f1 encoding). The steady-state (also known as “incremental”)
evolutionary algorithm [17] was used. To limit the number of factors that might
influence the performance of convection selection schemes, no crossover was em-
ployed in the experiments reported here. The crossover was however used in the
experiments discussed in [11], where convection selection schemes provided su-
perior results. The absence of the crossing over operator in this work and the
fact that convection selection schemes still yielded superior results means that
the crossover operator is not the only mechanism responsible for the efficiency
of these selection techniques.

In the convection selection schemes, individuals are first sorted according to
their fitness. Then each subpopulation receives a subset of individuals that fall
within a range of fitness values. In our experiments, two methods of determining
fitness ranges are considered. In the first method denoted EqualWidth (Fig. 1c),
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Fig. 1: An illustration of four compared selection schemes. The fitness of 20 in-
dividuals is shown as red circles, and 4 subpopulations are depicted as green
boxes. (a) Standard evolutionary algorithm with a single population. (b) Ran-
dom assignment of individuals to subpopulations. (c) Convection selection with
fitness intervals of equal width. (d) Convection selection with fitness intervals
yielding equal number of individuals.

the entire fitness range has been divided into equal intervals (as many as there
are subpopulations); if there are no individuals in some fitness range, the corre-
sponding subpopulation receives individuals from the nearest lower non-empty
fitness interval. In the second method denoted EqualNumber (Fig. 1d), once the
individuals are sorted according to their fitness, they are divided into as many
sets as there are subpopulations so that each subpopulation receives the same
number of individuals.

We compare here four approaches to selection (three of which use subpopu-
lations), and in each of them the underlying traditional selection mechanism is
the tournament selection. The logic of the three evolutionary processes that use
selection to assign individuals to subpopulations (i.e., Random, EqualWidth,
or EqualNumber) is implemented as follows. Every R · NM evaluations (where R
is the migration period scaling factor which defines how frequently subpopula-
tions should merge, N is the size of the entire population, and M is the number
of subpopulations), M subpopulations are merged and then all individuals from
the complete (merged) population are split again into M subpopulations accord-
ing to the applied selection scheme (Random, EqualWidth, or EqualNumber).
After that, the algorithm cycles through all subpopulations in sequence so that
each subpopulation becomes “current” in turn. The steady-state evolutionary
algorithm selects one individual from the current subpopulation (using tourna-
ment selection with the tournament of size t), mutates it and adds the newly
mutated offspring to the current subpopulation. Once this new individual has
been evaluated, the negative selection process removes randomly one individual
from a random subpopulation, so the size of the complete population remains
constant. Then, the next subpopulation in sequence becomes current. After all



subpopulations have been processed, the cycle starts again unless it is time to
merge all subpopulations and redistribute individuals to newly constructed sub-
populations.

In this paper we perform two kinds of analyses. The first kind compares the
quality of solutions obtained from the standard single-population evolutionary
algorithms with the results yielded by the three proposed subpopulation-based
selection schemes. The proper comparison between the single-population algo-
rithm and the three subpopulation-based approaches is not simple, as each of
these two concepts uses a slightly different set of parameters. Moreover, even the
parameters that are shared between the four approaches can have different op-
timal values for each approach. If one wants to properly compare the quality of
solutions achieved with each of the considered selection schemes, one should com-
pare the best results obtained across a series of many different parametrizations
for each selection scheme. Therefore, within each parametrization, the represen-
tative result for that parametrization is considered to be the average value of
the best fitness values obtained across many independent runs (repetitions).

The second kind of the analysis takes a more detailed look into the results
obtained by the three population-based selection schemes, two of which are con-
vection selection schemes. We compare the average results achieved for each set
of parameter values in order to understand which combinations of parameter
values work well together, which combinations work poorly, and what are the
potential reasons for such behavior.

The data required for both of the analyses discussed above were obtained
from the following experiments. In each of the evolutionary runs, 106 individu-
als were evaluated, so that even though the selection schemes were different, they
did not differ significantly in the overall computational cost. Two fitness func-
tions were considered: velocity and height. For the single-population evolution
and tournament selection, we have tested all the combinations of two parame-
ters: population size N ∈ {100, 200, 500, 1000} and tournament size t ∈ {2, 3, 5}.
For three subpopulation-based selection schemes, all the combinations of the
following sets of parameter values were tested: population size N = 1000, tour-
nament size t ∈ {2, 3, 5}, number of subpopulations M ∈ {4, 10, 25, 50}, and the
number of individual evaluations between merging the subpopulations (given as
the multiple of the size of subpopulations) R ∈ {2, 10, 50}. Such a setup means
that to obtain one result (i.e., best fitness value from one evolutionary run) for
each combination of fitness functions and parameter values, we needed to per-
form 2× ((4× 3) + 3× (3× 4× 3)) = 240 independent evolutionary runs. Since
the evolutionary process is non-deterministic, to obtain averages and standard
deviations for each parametrization, these runs were repeated 10 times which
yielded 2400 independent evolutionary runs.

3 Results

3.1 The performance of different selection schemes

Fig. 2 shows the performance of the evolutionary algorithms in time (mea-
sured as the number of individual evaluations) for four selection schemes –
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(a) velocity fitness function.
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(b) height fitness function.

Fig. 2: Comparison of the performance of single-population tournament selection
and three proposed meta-selections. Each series consists of the high bound (i.e,
best) of the average fitness value obtainable for a given selection scheme, for any
of the tested sets of parameter values. The band around each series represents
25% of the standard deviation for that series (25% is used instead of 100% to
avoid overlapping bands and improve the readability of the plots).



one single-population tournament selection, and three subpopulation-based algo-
rithms with super-selection schemes. Since the influence of parameter values for
the single-population approach and the three subpopulation approaches is not
directly comparable (even for the same parameters), in order to provide a fair
comparison we show the best average fitness value achieved by any parametriza-
tion for each approach, computed separately for each point in time. This means
that the chart is a high-level comparison of the best performance of the four
selection schemes that can be achieved over all parametrizations.

For the velocity fitness function, the performance of subpopulation-based se-
lection schemes is clearly superior to the single-population tournament selection.
While the fitness values for single-population evolution stabilize near the value
of 0.017, the convection-based schemes manage to overtake it by a significant
margin. The Random assignment selection scheme stabilizes only around the
value of 0.024, whereas the convection schemes continue to improve in time (see
Fig. 9 in [11] for the distributions of fitness values that illustrate the convection
effect), ultimately reaching 0.031 for the EqualWidth method and 0.037 for the
EqualNumber method.

The plot for the height fitness function presents similar, although less pro-
nounced relationships. Once again the subpopulation-based schemes yield better
results than the single-population selection, with convection selection schemes
outperforming the Random assignment of individuals to subpopulations. It is
worth noting however that for the first few thousand evaluations, single-population
selection leads to better individuals than the subpopulation-based schemes – in
this phase the optimization is relatively easy, and so population diversity (ex-
ploration) is not as beneficial as intensive, fast exploitation. Once the solutions
reach the fitness values above 2 it is much harder to produce better individuals,
at which point the subpopulation-based schemes overtake the single-population
selection.

3.2 The influence of parameters of the convection selection

Fig. 3 presents the effect that parameter values of convection selection have on
the quality of solutions that were found by the evolutionary algorithm. Depend-
ing on the selection scheme, various trends can be seen. For Random assignment
of individuals to subpopulations (Figs. 3a and 3b) no clear patterns emerged –
parameter values do not demonstrate any direct influence on fitness, which may
suggest that without any specific logic like fitness-based selection, the algorithm
cannot fully exploit the advantages of working with multiple subpopulations.

The opposite is however visible for the EqualNumber convection selection
scheme (Figs. 3e and 3f). For the height fitness function (Fig. 3f), high selective
pressure yields better results, as represented by darker circles being more filled
up than the light ones. For both fitness functions, increasing the migration period
scaling factor R (the vertical axis) leads to better results. The increase in the
value of R allows each of the subpopulations to significantly increase the qual-
ity of its solutions before the subpopulations are merged; for longer migration
periods, the contents of each subpopulation can change considerably between
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Fig. 3: Average best fitness values for each combination of parameter values
after 106 evaluations, additionally averaged along each of the three dimensions
(parameters). Empty circles represent the minimal fitness value present in each
chart, and full circles represent the maximal fitness value in each chart. The
minimal and maximal fitness values are shown in the legend.



migrations which facilitates diversity, and this is a desired property for hard
optimization problems.

The number of subpopulations M has a different effect on fitness values for
each fitness function. For velocity (Fig. 3e), increasing the number of subpop-
ulations (and hence reducing their size) has a positive effect on the quality of
results, which is indicated by the circles filling up along the horizontal axis,
while for height (Fig. 3f) and for early evolution of velocity (around the first
50k evaluations) it has a negative effect. While it is not clear what causes this dif-
ference, one possible explanation is related to different properties of these fitness
functions, as demonstrated in Fig.2. While the velocity criterion allows the algo-
rithm to continuously improve the quality of solutions by exploring new ideas of
“how to be fast” (i.e., more possibilities for exploration), the evolution of height
quickly leads to a plateau, where the improvement can be achieved mostly by
fine-tuning of existing solutions (“local optima”) that are easy to break.

Although no obvious trends are visible for the EqualWidth selection scheme
(Figs. 3c and 3d), it is worth noting that the combination of a small number
of big subpopulations and frequent migrations is unfavorable for both fitness
functions, as indicated by primarily empty circles in the bottom-left part of
these plots. The most likely explanation of this is the low level of exploration
that results from such parametrization.

4 Conclusions

In this article, we investigated the concept of convection distribution and convec-
tion selection [11] in single-threaded (non-parallel) evolutionary algorithms and
demonstrated that dividing the population into subpopulations based on fitness
values of individuals can significantly improve the quality of optimized solutions.
We have discussed potential mechanisms responsible for superior results of the
convection-based methods, the most important ones being the diversification
of the population and the ability to constantly explore diverse paths in fitness
landscape [11]. If many subpopulations are allowed to evolve independently for
longer periods of time, we can expect that each of them will produce unique, fit
solutions which can then compete and cooperate every time the subpopulations
are merged.

There are a number of issues that should still be examined. Even though the
experiments reported in this paper were computationally highly expensive due
to a large number of combinations of parameter values and very complex evolu-
tionary goals, it would be worthwhile to extend the ranges of parameters to test
the space of possible parameter combinations more comprehensively. It would
be advantageous to test the proposed approaches on more fitness functions, in-
cluding well-known benchmark optimization problems. Apart from convection
selection and random assignment of individuals to subpopulations, we would
like to additionally test the policy that ensures the best individual is placed in
each subpopulation. For larger populations, the convection selection may have
multiple levels so that it is applied recursively and subpopulations are nested
in each other – this concept is worth testing too, along with dynamic, adap-



tive strategies of splitting and merging subpopulations and recursion levels. It
would be useful to devise a formal statistical model behind convection selection
to understand its mechanisms and causes of its success. Finally, it will be inter-
esting to investigate to what extent can crossover benefit from convection-based
schemes where fitness of parents is in most cases similar.
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