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Abstract

Research in complex collective and multi-agent systems often involves building models of
three-dimensional biological life or evolving such structures in virtual environments. Appli-
cations stemming from evolutionary design, engineering, robotics, and artificial life require
processing of large numbers of such agents that are encoded in some form of a “genotype”.
However, what is important in evaluation is the “phenotype”, i.e. the actual 3D body and its
properties. This work introduces a number of ways in which a measure of similarity of 3D
agents can support researchers in recognizing the link between the genotype and phenotype
spaces, building taxonomies of 3D bodies and automatically selecting representative agents.
The measure of similarity employed here is based on phenotypes and places few restrictions
on the compared designs, so it can be applied independently of genetic representation.
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1. Introduction

One of the areas where many spectacular examples of complex collective systems exist
is biology. In such systems, mutual interactions of multiple agents generate rich and non-
linear patterns. When modeling biological life forms and their environments, two important
aspects that facilitate complexity are embodiment and embeddedness (situatedness). They
highlight the importance of physical interactions between the body and the world, and in-
dicate that the brain is not just an independent entity that processes abstract information.
The body and its physics are important factors in a number of fields, especially where mo-
tor control, sensory-motor coordination, navigation and mapping, or spatial computing are
involved. This concerns practical applications in robotics (evo-devo, morphogenetic, bio-
inspired, autonomous), and is also related to body and brain co-evolution, self-assembling
and self-replication of structures, and artificial embryogenies and synthetic biology. The body,
as a part of an organism, can also be used as an indicator of the complexity of the organism,
therefore bodies of creatures can be used as an input for measures of evolved complexity.

The process of evolution, often present in collective systems and usually simplified in
computer models as “directed” (with exogenous fitness) or “spontaneous” (with endogenous
fitness) evolution, is in fact a search process that generates and processes large numbers
of individuals. This work demonstrates how comparing these individuals can provide new
information in analyses of evolved or designed virtual bodies. From the formal point of view,
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Figure 1: Three-dimensional graph-based bodies compatible with the model considered in this work are used
in many disciplines including computer graphics, anatomy, design, engineering, and chemistry.

problems concerning three-dimensional agents are among the most difficult. Since individuals
– structures, designs – vary in size, shape, and complexity, their representations consist of
variable amounts of information. There exist a large number of genetic representations that
are used to encode 3D designs [1, 2, 3], and the level of generality of algorithms and tools
employed in this area is low. Since the analysis of 3D agents usually involves human expertise,
it is not easy to automate their evaluation and to further support humans in investigation
and understanding of the outcomes of optimization.

This article introduces selected applications of a measure which is able to estimate “dis-
tance” (i.e., dissimilarity) between a pair of three-dimensional agents. In classical combina-
torial problems (consider the similarity of binary strings or permutations as examples), the
concept of similarity of solutions has been employed for a long time, because it is relatively
easy to come up with a procedure that estimates similarity, and the definition of similarity
is usually natural and straightforward. When solutions become complex, there are many
possibilities regarding aspects that should be taken into account when the similarity is de-
termined, and the process becomes less obvious. For experiments reported in this work, a
heuristic measure has been used [4] to illustrate its usability and the advantages the concept
of similarity can bring to the organization of 3D agents.

The particular model of an agent considered in this work can represent any kind of
structure where connected vertices are located in a 3D space, as shown in Fig. 1. This includes
designs made of a finite number of elements (also active structures and robots [5, 6, 7]),
computer graphics objects and meshes, trusses in architecture and structural engineering [1,
8], circulatory and skeletal systems, chemical structures, molecules, and geolocated graphs –
e.g. supply, communication, or transmission networks.

Since a similarity measure is going to be applied to optimized agents, it should (1) be able
to deal with arbitrary structures, (2) have low computational complexity, and (3) capture
aspects of structures that are correlated with fitness in most optimization problems. The third
requirement is hard to satisfy a priori, but once a measure exists, the relationship between
fitness and similarity can be verified on a range of problems. The three requirements are
generally not satisfied by dedicated similarity measures which are used for 3D structures
in various areas (computer vision [9], bioinformatics and chemical informatics [10]) because
those measures are too specific and make additional assumptions regarding structures, or they
are too inefficient, or they are based on indirect information about compared structures [11].
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To address the three requirements, an original measure of similarity has been proposed [4],
and this measure is used in the experiments described here.

This paper is organized as follows: Sect. 2 briefly presents the model of a 3D agent
used throughout this work and provides a general idea of the procedure used to estimate
dissimilarity. Sect. 3 demonstrates a range of applications of the dissimilarity measure:
building taxonomies of agents, visualizing and investigating various aspects of their similarity,
reconstructing sequences of random geometric mutations from phenetic dissimilarity matrices,
and automatically selecting representative agents based on these distance matrices. Sect. 4
summarizes this work.

2. Estimating the dissimilarity of 3D agents

In the experiments presented here, bodies of agents are modeled as undirected graphs.
Vertices represent parts of a body, and arcs correspond to joints between these parts. Since
the geometry of an agent is essential in most applications, positions of body parts in the 3D
space are also considered. In robotics, simulations of life and evolutionary design, agents may
be active – they may include some kind of a control system. It is assumed that elements of
the control system are associated with (or located on) body parts or joints, and since control
elements can be connected, they constitute a directed graph.

Additionally, the components of a body (parts, joints) and the control system (sensors,
actuators, signal processing units, and their connections) can have a number of properties
such as mass, friction and stiffness coefficients, or sensory characteristics. These properties
are also part of the model and are taken into account when the dissimilarity of two agents is
estimated.

In the model, no assumptions are made regarding the structure of the graphs, their shape,
geometry, or occurrence of substructures. Therefore, surface meshes in computer graphics and
graphs representing volumes of solids [12] are compatible with this model, as well as skeletal
systems and most modularly-designed robots [7]; other implementations of the model can be
found in [13, 1] and in [14, chapters 3, 4, 5, and 11].

A detailed description and analyses of the dissimilarity estimation algorithm employed in
this work are provided in [4]. The main concept of evaluating the dissimilarity of two models
is outlined below. Since estimation of the dissimilarity of graphs is closely related to the
problem of isomorphism of graphs, and the exact algorithm that finds the maximal common
subgraph is NP-hard, a fast heuristic procedure has been employed.

The heuristic algorithm matches parts of the two structures based primarily on degrees
of vertices. In both compared models, vertices are first sorted by their degree, and vertices of
the same degree are sorted by the number of associated control units. The matching process
starts from groups of parts with the highest degree and the highest number of control units.
In order to discriminate between parts, location in space and additional properties of the
body and control system are taken into consideration, according to weights adjusted by the
researcher.
The steps required to estimate dissimilarity are as follows:

• create models corresponding to the two compared agents,

• match vertices in both models,

• with reference to the above matching, compute individual components of dissimilarity,

• if necessary, aggregate these components into a single value.
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The number of vertices in the two models can be different, and in this case, for each extra
vertex, a dissimilarity ingredient equal to the dissimilarity of the two maximally dissimilar
vertices is added to the appropriate dissimilarity component. As a result of the matching
algorithm, four values are obtained: dV – the difference in the number of vertices, dD – the
difference in degrees of matched vertices, dN – the difference in control units attached to
matched vertices, and dG – the geometric distance between matched vertices. If required,
these four components of dissimilarity can be aggregated into one value, for example using
the weighted sum formula:

dissimilarity = dV wV + dDwD + dNwN + dGwG (1)

Using a weighted sum is convenient since the weights are also used in the matching phase.
In particular, when wG = 0, the algorithm only estimates the structural difference of the two
graphs and geometric aspects of the agents are ignored. When wG > 0, both bodies are
aligned in space so that they overlap as much as possible. Details, analyses, and examples of
this procedure are provided in [4].

3. Applications

The experiments described in this section demonstrate a broad spectrum of applications
of the dissimilarity measure. These include clustering agent structures, discovering and
understanding evolutionary paths, finding representative agents, and identifying relationships
between fitness criteria and body shapes.

The following descriptions focus on the techniques of employing of the measure and do
not go into technical details of multi-agent simulations, and do not extensively list all the
simulation parameters. All the experiments were performed using Framsticks, a highly con-
figurable and versatile simulation environment [15, 16]. This software is suitable for modeling
autonomous agents, complex collective systems, and evolutionary and co-evolutionary pro-
cesses. It allows for any number of genetic encodings organized in a hierarchy [17, 3], and
features two modes of mechanical simulation (accurate rigid body and approximate elastic
body) [18, 19]. Framsticks is controlled by a custom scripting language that defines most as-
pects of the simulation and the user interface. The simulator is available for both desktop and
mobile devices and provides a number of user interfaces, from simple graphical ones to ad-
vanced command-line and distributed client-server architectures. The open-source SDK [20]
includes C++ sources of the dissimilarity estimation algorithm used in the experiments pre-
sented here.

3.1. Building taxonomies of evolved agents

Analyzing sets of evolved designs is tedious, difficult for a human and prone to various
biases and inaccuracies when performed manually. This was the main motivation for the
development of the similarity measure, which could help in automated analyses of large
collections of agents. In this study the measure has been applied to process a set of 29 designs
shown in Fig. 2. This set contains the best individuals evolved earlier in an experiment where
three independent, maximized fitness functions were considered: the height of the center of
mass with and without the neural network activated, and the speed of locomotion on a
flat terrain [3]. There were 10 independent evolutionary optimization runs for each of the
three goals, resulting in a set of the 30 best designs (one highest-fitness individual has been
selected from each run). One design, hp7, has been excluded from this comparison for better
presentation of results. The excluded design has evolved an exceptionally complex body
(4353 vertices) while the second most complex design (h5 ) has only 27 vertices and the third
one (hp0 ) has 16 vertices. Were this extremely complex design included in the comparison,
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Figure 2: 29 agents evolved in three tasks (maximize passive height, active height and speed).

Table 1: Weights used in the comparative experiment in Sect. 3.1 to compute aggregated dissimilarity.

Weight wV wD wN wG

Structure-only value 5 1 0 0

Geometry-aware value 5 1 0 1

its dissimilarity to all the other simpler structures would be so huge that it would dominate
other distances and therefore obscure visualizations of results.

Two distance matrices of size 29 have been computed using the structure-only (wG = 0)
and the geometry-aware (wG > 0) dissimilarity estimations. The weights were adjusted
to expose the influence of geometrical dissimilarity [4] compared to structure-only dissimi-
larity [21] as shown in Table 1. Differences in neural networks were not considered at all
(wN = 0). The value of wV corresponds with the highest importance of the difference in
complexity (the number of vertices). The intermediate value of wD reflects the importance of
differences in the degree of matched vertices. The value of wG is 0 or 1, which allows direct
observation of the impact of the geometric dissimilarity component.

Both dissimilarity matrices were used to generate hierarchical clustering trees. The un-
weighted pair group method with arithmetic mean (UPGMA [22]) was applied here. It is
a simple agglomerative data clustering technique that uses a sequential algorithm to group
objects that differ least (their dissimilarity is lowest).

Fig. 3 shows UPGMA trees for the structure-only and the geometry-aware dissimilarity
measures. In both trees, the h5 body is considered unique because it has many more vertices
than other bodies, and the wV weight is high. The trees reveal three general groups: the
bottom group of simple (mostly linear) designs (constituted by agents evolved for speed,
“s”), the top group of complex, bush-like structures (hp0..h6 ), and the central group of
intermediate designs (hp2..h7 ).

The contents of these three groups is similar in both trees except for the s5 design. This
design was located in the bottom “linear structures” group when only structural proper-
ties were evaluated, but when geometry was additionally assessed, s5 moved to the central
“intermediate structural complexity” group. An important advantage of considering the ge-
ometrical properties of agents is the increase in resolution of the dissimilarity measure. The
structure-only approach was unable to discriminate between a number of bodies (e.g. hp2,
hp3, hp6, hp9, etc.), while the geometry-aware dissimilarity estimation successfully captured
their diversity.
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Figure 3: UPGMA trees for the agents shown in Fig. 2 (left: structure-only dissimilarity measure, right:
geometry-aware dissimilarity measure).

Another visible difference is the increase in distances in the top and central groups, but
not in the bottom group. The top and central groups contain bodies of high and intermediate
structural complexity, so geometric differences are highest once these structures are aligned.
On the other hand, the bottom group that comprises nearly-linear designs was hardly in-
fluenced by the geometrical difference component. This relative increase in the dissimilarity
of complex structures is a desired effect, as is the increase in the resolution of dissimilarity
where structural aspects are insufficient to discriminate between agents.

Overall, both estimates of dissimilarity (with and without geometrical aspects) proved
useful in the analysis of this set of evolved designs, with the geometry-aware approach proving
superior in terms of resolution of discrimination.

3.2. Visualizing and investigating various aspects of similarity of agents

The previous subsection focused on the illustration of the geometrical vs. structural com-
ponents of the dissimilarity measure, and demonstrated that difference on a relatively small,
comprehensible example. In this subsection, a larger set of creature models will be processed
and more combinations of the weights of the dissimilarity measure components will be em-
ployed. This will demonstrate how the adjustment of weights can facilitate the visualization
of various aspects of similarity in a set of agents.

An input set consists of creatures evolved to maximize four criteria: vertical position of
the center of mass (with and without neural network enabled) and velocity (on land and in
water). The vertical position was averaged from measurements taken every 100 simulation
steps. For each of these four criteria, 100 creatures have been independently evolved in a
steady-state evolutionary algorithm. The most important parameters of the evolutionary
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Table 2: Sets of weights of dissimilarity components used for the comparison in Sect. 3.2. Results are shown
in Fig. 4.

wV wD wN wG Fixed vertical axis?

(a) 1 0 0 0 irrelevant

(b) 0 1 0 0 irrelevant

(c) 0 0 0 1 no

(d) 0 0 0 1 yes

(e) 0 0 10 1 yes

(f) 0 0 1 0 irrelevant

process were as follows. The genetic representation was f1, also known as recur [3, 15, 16].
The gene pool size was 1000. The positive selection mechanism was the tournament of size 3.
The evolutionary optimization process consisted of two phases, and each phase ended when
one million of non-improving evaluations of new creatures occurred. In the first “exploration”
(low selective pressure) phase, the negative selection consisted in removing a random genotype
from the gene pool. In the second “exploitation” (high selective pressure) phase, the negative
selection was removing the worst genotype from the gene pool.

To evolve more robust creatures, a small amount of non-determinism was included: when
a creature was born, the states of neurons in its neural network were initialized randomly. In
order to achieve reliable fitness, creatures were evaluated multiple times and performance was
averaged. A small penalty was added to the fitness function for each component in body and
brain to limit the number of unnecessary components in creatures. The formula to deduct a
fraction of the original raw fitness value was adjusted so that the pressure for simplicity was
extremely low and did not significantly disturb the fitness landscape. Assuming that “this”
denotes the currently evaluated creature, the formula was as follows:

var fitness=this.velocity; //or this.vertpos for vertical position

var components=this.numparts+this.numjoints+this.numneurons+this.numconnections;

var penalty=1.0-Math.exp(-0.001*components); //exponentially scaled, 0..1

if (fitness>=0)

return fitness*(1.0-penalty); //positive: penalize, make less positive

else

return fitness/(1.0-penalty); //negative: penalize, make more negative

In Framsticks, body and brain of an agent (the Model object) is constructed based on its
genotype. Then the model is put into simulation (the Creature object) where environmental
forces act, so the simulator awaits while the agent stabilizes and then its neural network starts
working. Since the morphology of a Model does not properly represent evolutionary fitness, in
the following analysis morphologies of Creature objects are employed from the first moment
when they became stable (stationary) after being put in the simulation.

The 4× 100 independently evolved agents (see the video at https://www.youtube.com/
watch?v=lo4vL7gOuYk) were then mixed into a single unordered set, and six dissimilarity
matrices were calculated according to the weights summarized in Table 2. The time to
compute a 400× 400 distance matrix on a single 2.4 GHz processor core was approximately
92 seconds when the geometric component was employed, and about 45 seconds in other
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Figure 4: 2D projections of distance matrices for 4× 100 evolved creatures and different sets of dissimilarity
weights summarized in Table 2. The axes correspond to the two highest singular values of the centered
distance matrix – they retain the maximum variance of the original distance matrix. Letters denote creatures
with respect to the maximized fitness criterion used in evolution: red ‘P’ – height passive, violet ‘A’ – height
active, green ‘V’ – velocity on land, blue ‘W’ – velocity in water. The fraction of total variance preserved in
these projections is (a) 100%, (b) 97%, (c) 62%, (d) 93%, (e) 79% and (f) 62%. Agents in locations (d) are
shown at the end of the video at https://www.youtube.com/watch?v=lo4vL7gOuYk.
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cases. The distance matrices were then projected1 into 2D, and the resulting projections are
shown in Fig. 4. A small amount of random noise (jitter) was added to the coordinates of
each point to avoid overplotting.

These projections can be analyzed from two points of view. First – as unlabeled data,
when researchers look for clusters and investigate what such groups of similar organisms have
in common. Second – as labeled data, where a researcher initially knows that they come from
different sources and wants to discover and understand a potential relationship between these
sources and similar traits in the organisms.

In the “unlabeled data” analysis, one investigates the shape of the distribution of data
points ignoring colors and symbols – assuming that the origin of the agents is unknown.
Fig. 4a is trivial because the similarity only reflects the number of vertices in creature bodies.
We can see that for the majority of creatures, the number of vertices falls within some range,
but there are also creatures with extraordinarily high or low number of vertices (the chart
itself does not tell the number of vertices, it only indicates that these extreme agents are
dissimilar from the majority). Fig. 4b represents similarity in the structure of bodies, and
we can see a few clusters and rare outliers. We can only suppose that these clusters may
have different origins. Figs. 4c and 4d illustrate geometrical similarity, with the latter chart
considering the vertical axis as special in that the similarity measure was not allowed to tilt
creatures when aligning them and assessing their geometrical similarity – it could only rotate
them horizontally. One can see two stretched groups of creatures that share a common
point in Fig. 4c, but not in Fig. 4d. This may indicate that some agents in these two
groups share similar morphological characteristics, but they are rotated (agents from one
group are more horizontal in shape, while agents from the other group are more vertical).
Finally, Figs. 4d, 4e and 4f illustrate a transition from a pure geometrical similarity to the
similarity in the number of neurons, with Fig. 4e being a mix of both aspects (geometry and
neurons). We can see how considering the neural component (Fig. 4e) in addition to pure
geometry (Fig. 4d) increased the resolution of the measure and allowed to better discriminate
between geometrically identical agents. Another conclusion is that groups of agents based
on the similarity in the distribution of neurons in the body (Fig. 4f) are different and less
pronounced than clusters based purely on body geometry (Fig. 4d).

A separate set of conclusions can be drawn when one considers different origins of the
agents (the “labeled data” analysis). In this particular experiment we not only know the
origin (the four evolutionary goals), but we can also understand and interpret these goals, as
they are meaningful for a human. Looking at Fig. 4a we can see that all agents evolved for
speed on land (“V”) are on the far end of the number of vertices in their bodies, but there are
some “A” agents (they had maximized body height with neural network enabled) that are
even more extreme in their number of vertices. Since Fig. 4a shows all the information from
the distance matrix in one dimension, we conclude that this chart presents all agents sorted
according to the number of vertices, and we can easily check that the left side of the plot
corresponds to the simplest creatures, while the right side is occupied by the most complex
agents – and these agents maximized their body height while being passive (“P”). Agents
evolved for speed in water have an intermediate number of vertices in their bodies. Apart
from very simple “A” agents, there is a separate subgroup of these agents with slightly higher
body complexity. In Fig. 4b (similarity in body structure), we can see that swimmers (“W”)
constitute a separate group, but simple swimmers have similar structure to most runners
(“V”) and some jumpers (“A”). Tall structures (“P”) are quite diverse, and again, the chart

1The distance matrix has been projected down by first computing the centering matrix for the distance
matrix, then transforming the distance matrix into the cross-product matrix, and finally computing the
singular value decomposition [23].
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reveals two strategies that were evolved in the “A” group. Some “A” agents are structurally
similar to runners (and in order to achieve high vertical position they perform jumping
synchronized in time with the measurement period), and another subgroup of “A” agents
does not use neural networks – their body structure evolved to be similar to “P” agents.
The uniqueness of swimmers is confirmed in Figs. 4c and 4d, this time in terms of body
geometry, and these two charts also show that geometrically, runners (“V”) are extremely
similar to each other. One swimmer is separate in Fig. 4d but not in Fig. 4c, and this is
because its body, contrary to all other swimmers, is not horizontal when born under water.
Finally, looking at neural similarity in Fig. 4f, we can see that this time all tall agents (“P”)
are identical because they hardly have any neurons (the neural network is not working in
passive height maximization so there is no reason to develop it). The sequence of Figs. 4d–f
– the progression from looking at pure body geometry to considering pure brain structure –
demonstrates how the groups of runners, swimmers and jumpers expand and diversify while
the group of passive tall agents collapses and becomes more uniform.

Given that there is not much computational cost required for such analysis, the presented
technique provides an invaluable support tool for researchers analyzing large sets of evolved
3D agents. This particular experiment was just an illustration of a potential usage scenario;
many fitness goals were mixed here and optimization was used to obtain a set of diverse
morphologies, but the same approach could be used to investigate in detail agents evolved
in one setup. The tool can be even more helpful when the origin of agents is unknown or
cannot be easily labeled and interpreted (e.g. they come from an undirected, spontaneous
evolution or coevolution).

3.3. Reconstructing sequences of mutations and evolutionary paths

In paleontology and biostratigraphy, researchers often study traces of extinct organisms
(such as exoskeletons of trilobites found in the fossil record), because the genomes of these
organisms are not available. As they disappeared millions of years ago, classification of such
organisms must be performed using phenotypic features such as selected aspects of morphol-
ogy or physiology [24]. Another example of organisms with an extraordinary fossil record
that are often used for testing paleoecological and evolutionary hypotheses are Foraminifera.
Their bodies consist of connected chambers, and such a morphology can be represented as
a 3D communication path (i.e., a linear graph) that connects successive chambers as they
grow [25]. Even when the genomes of organisms are available, in many scenarios analyzing
phenotypic traits may still be more practical (closer to the environment and fitness) than
assessing similarity on a genetic level. Geometry (shape) of bodies is also crucial in most
experiments in the areas of evolutionary design, collective robotics and evolutionary robotics.

The following experiment demonstrates the way the measure can be used to accurately
estimate dissimilarity in order to discover ancestral relationships in a set of agents. Just as in
the paleontological case described above, we assume that there is no information about any
relationship between these agents. To generate sample morphologies, a number of consecutive
mutations have been performed starting from a given initial genotype:

initial genotype→mutant1→mutant2→ · · · → mutantN

The genetic encoding used in this experiment is called direct or f0 [3, 15, 16]. In this
encoding, the genotype explicitly lists coordinates of all the vertices. Each mutation moves
a randomly selected vertex in an agent by a random distance in a random direction in 3D.
The designs only differ in geometry, which makes it a demanding task for the dissimilarity
measure, as no structural differences occur in the sequence. The initial genotype describes
the Humanoid design – a simple structure with 16 vertices and 16 edges which resembles a
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Figure 6: 2D and 3D projections of the distance matrix for the mutation sequence of the Humanoid genotype
denoted as ‘H’. The axes correspond to the two or three highest singular values of the centered distance
matrix – they retain the maximum variance of the original distance matrix. The proportion of total variance
preserved is 67% for 2D and 74% for 3D.

human body. Starting from this genotype, N = 30 mutations have been performed, as shown
in Fig. 5.

The resulting 31 genotypes have been compared using the dissimilarity measure; a square
matrix of size 31 has been constructed which contains distances between each pair of struc-
tures. As in the previous subsection, this matrix has been further processed using multidi-
mensional scaling techniques to reduce it to two or three dimensions for visualization.

This experiment was repeated 10 times: 10 mutation sequences (each containing 31 geno-
types) were generated independently, starting from the initial genotype. Fig. 6 shows the
2D and 3D plots for the experiment, which allowed the preservation of the highest amount
of variation after reducing dimensionality. For all 2D projections, the proportion of total
variance preserved ranged from 50% to 67%, and representative results of other runs are
depicted in Fig. 7.

It can be clearly seen that the dissimilarity measure was able to capture the amounts of
geometrical differences between mutated structures, which resulted in distinct paths visible
in the graphs. Note that the reduction of dimensions causes loss of information, so that
the patterns which can be seen in 2D and 3D graphs do not perfectly represent the original
distance matrix. Still, the arrangement of mutants which results from dissimilarity estimation
reflects the mutation process which occurred.
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Figure 7: 2D projections of distance matrices for another four mutation sequences of the Humanoid genotype
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Figure 8: A tree produced by the neighbor-joining algorithm for the distance matrix also used in Fig. 6.

Fig. 8 shows a tree constructed using the heuristic neighbor-joining technique [26] from the
distance matrix illustrated in Fig. 6. This unrooted tree is quite a successful reconstruction
of the original sequence of mutations, and one can see analogies between the proximity of
mutated designs in both figures. Reducing dimensions with the SVD and generating trees
with the neighbor-joining algorithm yield two corresponding views of the same source data
– the phenotypic distance matrix.

Now let us consider a more complex scenario. As in the previous experiment, a sequence
of random geometric mutations is given, but this time the sequence bifurcates in the middle,
and from this point on there are two independent mutation sequences. This is analogous to
speciation:

initial genotype→ mutant1 → · · · → mutantN
2
→ mutantN

2 +1 → · · · → mutantN
↘ mutant∗N

2 +1
→ · · · → mutant∗N

A star (*) is used to denote one branch of the bifurcated mutation sequence. This exper-
iment is illustrated in Fig. 9 for N = 30.

In each of the three subsequences (or two longer, overlapping subsequences), consecutive
genotypes differ by a single geometrical mutation. For all 46 structures, a square matrix
has been constructed which comprises distances between each pair. The matrix has been
processed using the SVD transform [23] to obtain a two-dimensional projection for analysis.
This experiment was repeated 10 times: 10 bifurcated mutation sequences (each containing
46 genotypes) were generated independently, starting from the initial genotype.

Representative results are shown in Fig. 10. Obviously, it is more difficult to distinguish
between two independent mutation sequences, as they may become similar at any point.
However, the similarity measure was still able to quantitatively capture geometrical differ-
ences between paths of mutated designs. Despite the information loss caused by the reduction
of dimensions, trajectories of successive mutants can be seen in the 2D plots. Where the two
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Figure 9: A bifurcated sequence of 30 consecutive geometrical mutations (left to right) of the initial Humanoid
genotype, H.

paths are separate and clean, the corresponding trees produced by the neighbor-joining al-
gorithm [26] also clearly show the bifurcation. Where mutation paths induced by phenetic
dissimilarity overlap or cross, this is also reflected in the 2D graphs, and generated trees are
unable to perfectly reconstruct original sequences of mutations.

3.4. Exploiting the relationship between phenetic properties and fitness criteria

An often encountered need in research involving multiple evolved agents concerns identi-
fying groups of similar agents, relating them with their environments, and selecting a small
subset of representative agents for detailed inspection. Again, these steps could be done
manually, but this would be extremely time-consuming, subjective, and impractical for large
sets of agents – hence the need to develop automated methods. This issue has been addressed
here by using the dissimilarity measure to identify fitness criteria and to automatically select
representative designs by clustering evolved agents. The designs only differ in geometry – all
of them share the same structure. Identical structures and the absence of control systems
make the wV , wD and wN weights irrelevant. The wG weight should be set to a positive
value (wG = 1 was used in this experiment).

In the evolutionary processes, five fitness criteria were employed:

• C: height of the center of mass,

• T: height of the top vertex of a design (i.e., maximal height),

• V: volume of a design (measured as its sizex · sizey · sizez),

• F: flatness (planarity) of a design (measured as
sizex·sizey

sizez
),

• L: linearity of a design (along the x axis, measured as sizex
sizey·sizez ),

where size is the extent of the bounding box along the given axis. These criteria model
diverse environmental pressures: to keep most parts of a body elevated (C), to have the top
part of a body as high as possible (T), to occupy the most space (V), to occupy the most
area and stay flat (F), and to have the longest narrow body (L).

The initial design for these experiments is shown in Fig. 11. It is a very simple structure
with 11 vertices and 10 edges of length 1. The simplicity of this design makes experimen-
tation and analysis easier, yet the structure has the potential to form diverse geometric
configurations.
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Figure 10: 2D projections of distance matrices for four bifurcated mutation sequences of the Humanoid
genotype denoted as ‘H’. The fraction of total variance preserved is (top to bottom, left to right): 54%, 56%,
47% and 50%. The bottom right graph represents the sequence shown in Fig. 9; compare how 29 and 30
became similar to *22 and *23, and notice the mutation of *23→*24 (elongation of the “right arm”).

Figure 11: Initial structure for experiments with the evolution of geometry and five fitness criteria (Sect. 3.4).
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For each of the five fitness criteria, 10 independent runs of a steady-state evolutionary
algorithm were performed. The population size was 50. In order to preserve the structure, no
crossing over was allowed, and only geometric mutations were used. The mutation randomly
moved a random vertex of a body, and the maximal allowed edge length was 2. Tournament
selection was used with a tournament size of 2. The evolutionary process consisted of two
phases, each of which lasted until 1000 non-improving individuals were evaluated. In the
first phase, negative selection consisted of removing a random genotype. In the second, high
convergence “local search” phase, the worst genotype was removed by negative selection.

Although the analysis of parameters and dynamics of these 50 optimization processes is
outside of the scope of this article, there are two issues worth mentioning:

• The “T” fitness criterion was not the one that yielded designs of maximal height.
The highest designs (according to the “T” criterion) were evolved using the “C” goal,
because its fitness landscape was easier for evolution and independently promoted all
vertices (from base to top) to be moved upwards. The “T” goal only reflected the
position of the topmost vertex, obscuring the influence of lower vertices on fitness.

• Among the ten “C”-evolved designs, there are three subgroups. In each case, the
population was attracted to one of the three possible “ideas” or local optima, depending
on which vertex was used as a base of the structure (see Fig. 11). The base vertex
determines the maximal height that can be achieved. Once a particular base vertex
dominated in the population, mutations improved the positions of remaining vertices
and the population converged. Out of ten runs, there were six structures with one of
the three outer leftmost or three outer rightmost vertices (Fig. 11) at the base, which
allowed a maximum of four elevated edges (shown as C4 in Fig. 16). There was also
one structure with the central vertex as the base (at most two elevated edges), and
three structures with one of the remaining vertices at the base that allowed for at most
three elevated edges (shown as C9 in Fig. 16).

Geometric dissimilarities among 50 resulting designs were computed, producing a distance
matrix of size 50. Fig. 12 shows the UPGMA tree computed from this matrix. It can be seen
that the group of six “C” designs (C0, C3, C5, C6, C4, C8) is considered most similar – these
are the bodies similar to C4 in Fig. 16. Another cluster is formed by C1, C9, C2 and C7,
where C1 and C2 are similar to C9 in Fig. 16, and C7 is the single structure with the central
vertex at the base. As with all other “C” structures, C7 has all its edges elevated upwards,
but it is the shortest of all the “C” designs; it is shown as the top right “C” in Fig. 13 and
is located in the far distance on the right in Fig. 14.

Other bodies are considered less similar, yet they form relatively pure clusters. The
“L” cluster is entirely separated, and it is further linked to the cluster of six elongated “C”
structures. The “V” (volume geometries) cluster consists of nine “V”-evolved structures,
while the “F” and “T” groups of structures are partially mixed.

The same distance matrix was also processed with the SVD to produce a 2D projection
shown in Fig. 13. The relationships discussed above for the UPGMA clustering are also
visible here: there is a clear “L” cluster, and two or three subgroups within the separated
“C” cluster. Even though the proportion of total variance preserved is only 39%, one can
easily distinguish generally unmixed “V”, “F” and “T” clusters.

Fig. 14 depicts the actual designs located on a 2D plane at coordinates computed us-
ing SVD (shown in Fig. 13). This figure enables the drawing of a number of interesting
conclusions on human versus automated ways of comparing designs. The first impression
is that designs that are geometrically similar are located close to each other – the measure
was able to capture the degree of visual similarity among 50 structures. Bodies in the “V”
(maximized volume) group seem so complex that it would be extremely difficult to compare
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Figure 12: UPGMA clustering of 50 evolved agents (identical structure, 5 diverse fitness criteria).
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Figure 13: 2D SVD projection of the distance matrix of 50 evolved agents (identical structure, 5 diverse
fitness criteria). The total variance preserved is 39%. Representatives are circled; see text for details.

them by hand. This is also true for the “T” (maximized height of the top vertex) group.
It would be very hard for a human to classify evolved designs into either “V” or “T” which
demonstrates the usefulness of the automated approach.

For a human, there are two unusual things about Fig. 14. Why is the “F” cluster of flat
designs located between “V” and “T”? And why are the “L” designs so dispersed within their
own cluster? There is one answer to both questions. While humans, by default, pay special
attention to the vertical direction (or they are aware of its importance in this experiment),
the dissimilarity estimation algorithm which has been employed in this experiment does not.
The three axes are indifferent here, and there is no reference to any absolute coordinate
system. The algorithm considers designs as located arbitrarily in a 3D space, so there is not
much difference between the “L” and “C” groups. Since many of the “T” bodies are almost
flat, it is wholly rational to consider them similar to the “F” structures.

On further analysis of individual designs, the layout proves to be most reasonable, with a
general gradient from voluminous forms (left side) through flat (middle) to linear ones (right
side). This ordering constitutes a direction in the phenetic space – a direction that reflects
different concepts of fitness. It also displays the relative location of the areas in the phenetic
space where locally optimal solutions exist for different fitness criteria.

One of the advantages of automated dissimilarity estimation is the ability to easily com-
pute distance matrices for large sets of designs. These matrices can be further used to
automatically select a small number of representatives from original populations. This is
again very useful for a human, as it removes the need for manual and subjective inspection
of optimized agents. To gain the benefits of this process, the PAM (Partitioning Around
Medoids) method [27] was applied which is a more robust version of the K-means algorithm.
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Figure 14: The actual bodies located on a 2D plane at coordinates from Fig. 13.
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Figure 15: PAM clustering assessment.

In order to estimate the quality of clusters and automatically select the number of clusters,
the average silhouette width was computed [28] for K (the potential number of clusters)
ranging from 3 to 50. The average silhouette width is a measure of separation of clusters,
and for the 50 considered structures it has a maximum for K = 6, as shown in Fig. 15.

The PAM algorithm running for K = 6 produced the clusters shown below. Repre-
sentative designs (medoids) are given first (before the colon), and they are also circled in
Fig. 13.

C9 : C1 C2 C7

C4 : C0 C3 C5 C6 C8

T5 : T0 T2 T3 T4 T6

V9 : V0 V2 V3 V4 V5 V6 V7

F7 : F0 F1 F2 F3 F4 F5 F6 F8 F9 T8 V2 V8

L7 : L0 L1 L2 L3 L4 L5 L6 L8 L9 T1 T7 T9

The representatives which have been determined with no human intervention correspond
to the five evolutionary goals, with the “C” goal having two representatives. The clusters
are almost perfect and no random noise can be seen: the “C” clusters are clean, and the
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C9 C4 L7F7V9T5

Figure 16: Six representatives of a set of 50 bodies evolved for 5 fitness goals.

“F” and “L” clusters contain all designs from their own fitness criterion and include a few
similar designs from the other evolutionary goals. The “T” and “V” clusters are clean
but incomplete – they miss 4 and 2 agents, respectively; the geometry of these “T” and
“V” designs was similar enough to the “F” and “L” designs to assign them to clusters
where “F” and “L” dominated. Overall, this result is extremely satisfactory given that the
dissimilarity estimation was only concerned with the geometry of structures and not their
horizontal/vertical orientation, and that the process of identification of clusters was fully
automated and unaware of the origin of these 50 designs.

Fig. 16 depicts the six actual representatives. These pictures demonstrate that although
it may be tempting for a human to intuitively estimate similarities, such a manual estimation
would be far from perfect. The complete 3D structure is not perceived, and it is difficult for a
human to rotate, reflect and move 3D agents to match corresponding vertices and objectively
estimate their differences.

Increasing the size of the population (e.g. to 500 or 5000 individuals) would only use up
additional time in order to compute the distance matrix (this can be easily parallelized),
while the automated procedure to obtain representatives would stay the same and human
effort would not increase, which was the goal.

4. Conclusions and further work

This article introduced and demonstrated applications of the similarity measure that
support researchers in the analysis and organization of populations of three-dimensional
agents and designs. Applications of this similarity evaluation procedure are independent from
particular genetic encoding and genetic operators: measuring dissimilarity was performed on
phenotypes, i.e., the actual structures, and not on their representations. This allowed the
measure to be a more general tool, and at the same time moved the concept of similarity
towards the quality and fitness of designs (i.e., from the genotype space to the phenotype
space).

The advantages of using a similarity measure which have been presented in this article
concern environments and systems where 3D agents are involved, such as evolutionary design,
evolutionary robotics and artificial life. However, few assumptions have been made regarding
compared graphs, so the 3D model is also compatible with biological forms, chemical and
biochemical molecules, or more generally, structures which are built from a finite number
of connected simple elements. These basic elements (vertices and edges) can be assigned
various properties depending on the area of application – the properties can be masses,
frictional coefficients, material types, strength of bonds, the number and type of attached
control units, sensors and actuators, or their parameters.
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An important area that highly benefits from analyses of genotype–phenotype relation-
ships based on the similarity of phenotypes is optimization – in particular, the efficiency of
optimization algorithms and the characteristics of the search space. Due to page restrictions,
these experiments will be described separately.

In this work, estimating dissimilarity concerned static morphologies. Were they sequences
of changing morphologies, there would be another dimension which characterizes such struc-
tures – time. Obviously, it is more difficult to estimate the similarity of moving structures,
not only because of the computational complexity, but also because the similarity itself is
not clearly defined and multiple approaches exist. When bodies change shape over time, it is
their geometry that changes, but usually control signals change in time too. The similarity of
two active agents – robots or animals, for example – can be based on both of these aspects:
dynamics of control and sequences of movement. Both aspects are currently investigated in
a long quest to develop a range of automated tools that support the analysis of life forms
and their models.
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