
Estimating similarity of neural network dynamics

Maciej Komosinski Krzysztof Rosiński

Technical Report RA–10/10

Institute of Computing Science
Poznan University of Technology

December 2010

maciej.komosinski@cs.put.poznan.pl

Abstract

This report concerns estimation of the similarity between neural networks of any topol-
ogy. Motivations and benefits of having an automated and quantitative network compar-
ison mechanism are presented. The concept of neural network dynamics (neuron output
signal) is considered. A measure is proposed for estimating similarity of active (i.e., work-
ing) neural networks. Properties of the measure are analyzed theoretically and verified
empirically. The experiments have been performed on a set of evolved networks respon-
sible for controlling 3D structures (agents, robots). These experiments demonstrate the
capabilities and the limitations of the proposed measure as a mechanism to support hu-
mans in analyzing large sets of neural networks.

Contents

1 Introduction 2

2 Possible approaches to comparing neural networks and their dynamics 2

3 Numerical measure of similarity of neural network dynamics 3
3.1 The algorithm . 3
3.2 Illustrative examples . 5
3.3 Fourier window size and its impact on the results 6
3.4 Properties . 7
3.5 Time complexity . 8
3.6 Penalty function for networks with different number of effectors 8

4 Application in automated analysis 9
4.1 Fixed NN topology . 9
4.2 Variable NN topology, two variants of body . 12
4.3 Variable NN topology . 13
4.4 Mixed populations . 14

5 Conclusions and further work 16

1

1 Introduction

Artificial Life is a fast-developing branch of science strongly related to many other dis-
ciplines. There are many simulation environments that enable execution of sophisticated
experiments [11], and thus the need of obtaining expensive equipment (in order to carry them
out physically) may be postponed until positive results are observed. However, computer
simulations produce enormous amounts of data. It is not feasible for a human to analyze each
evolved creature/agent and compare it to the others. There is a need for tools that could pre-
process the data and arrange it in groups to make it easier to interpret. An intuitive clustering
criterion is creature dissimilarity (or similarity) [12], yet the problem is in measuring high-level
behaviors with available low-level data. One can compare creatures by a combination of their
physical features and effector behavior. In general, the physical structure is a 3-dimensional
graph that consists of sticks (edges) and tendons/muscles (vertices). For the purpose of com-
paring such structures, protein structure alignment algorithms may be used (tertiary protein
structure may have similar representation [8]). Such metrics are good for comparing static
structures, but they provide no knowledge about creature behaviors. Therefore, there is a
need to compare neural networks.

Technically, a neural network is a set of connected neurons, each usually containing weighed
inputs, an output, and an activation function. In the considered case, some inputs may
be connected to receptors (creature senses/sensors) and some outputs may be connected to
effectors (mainly muscles). In the higher level of abstraction a neural network represents the
creature brain and nervous system, able to receive information from the environment and
affecting it via effectors. The hidden and input layers of a neural network usually contain
information about its reflexive behavior, however they may even encode cognitive functions
and natural intelligence [6]. In order to compare these networks, some information about
their behavior must be extracted. According to the methods presented in [1], there are two
main approaches of analyzing neural networks: the “black-box” approach, which analyzes the
network by sampling input signals and evaluating the output, and the pedagogical approach
that tries to build a logical, or mathematical, relation between the input and the output layers
by checking neural connections and weights.

If a measure that compares dynamics of any neural network [21] with any other would exist,
and if it would return a sensible estimate of similarity, then new possibilities to process data
would appear. Additional experiments can be performed on the analyzed networks in order
to verify the impact of each networks characteristics on their similarity (i.e., global convexity
analysis, or parameter-similarity correlation). The measure may be used to build a dissimi-
larity matrix (data preprocessing), such data may be used to cluster a large amount of data
into few general profiles (centroids or medoids) for the purpose of performing more sophisti-
cated and time-consuming operations or assigning objects to classes. Finally, a dissimilarity
matrix enables representing the analyzed objects in a two- or three-dimensional space (using
multi-dimensional scaling, with possible information loss), enhancing human interpretation
capabilities [13].

2 Possible approaches to comparing neural networks and their
dynamics

In order to compare neural network dynamics, one has to analyze the appropriate output
series and extract some information that describes them. Time series analysis has many ap-
plications besides the presented problem: economy [7], signal processing [20], control of con-
tinuous processes [2], meteorology [22], neurology [23], and many more. Time series and their
corresponding models have been analyzed theoretically and practically throughout the past
decades [4, 3]. In the literature concerning this topic [5, 19], four most commonly used fami-

2

lies of methods have been distinguished: polynomial methods, least-square methods, Fourier
methods and space-state model methods. The polynomial methods rely on polynomial alge-
bra, difference and differential equations or space-state equations. Due to their complexity
and characteristics, the polynomial methods are not fit for solving the presented problem: the
polynomials that could be used would have large degrees and often the number of terms would
differ for different sample count.

The least-square methods are a set of statistical operations that may be used on series
of discrete data. Such include classical regression analysis, recursive least square estimation,
polynomial trend estimation, and time series smoothing. These methods are commonly used
to analyze time series due to their simplicity, low computational complexity, and mostly
informative results (i.e., stock and shares price analysis). The mean square error method
is a frequent tool for calculating data series analysis and it is an important function of the
proposed algorithm.

The Fourier methods (discrete Fourier transform, Fourier integrals) transform the series
from the time domain to the frequency domain, which is useful when the series are periodic
(i.e., in signal processing). These methods are essential to perform a cepstral analysis [9]
of a sample of sound, which is currently a key method of pitch recognition. The Fourier
transformation has been used in the proposed algorithm because usually neuron responses
tend to be periodic.

The space-state methods are frequently used in control engineering and operational re-
search. The space-state models rely on mathematical analysis and applied mathematics: the
model itself is represented by a set of differential equations that explain the relation between
inputs and outputs. This is by far the most sophisticated model and applying it to the algo-
rithm would require the use of numerical methods, which give accurate results only at a cost
of high computational complexity. Furthermore, information about creature receptors would
be required to create such models, yet it is unavailable – the only input data are the time
series. Summarising, the space-state methods are a not suitable for the considered purpose.

Based on the above analysis for evaluating similarity of neural network dynamics the mean-
square error (MSE) function has been chosen. It operates on series of neural output data, or
on the discrete Fourier transform of such series. The algorithm and other technical issues are
presented in the following sections.

3 Numerical measure of similarity of neural network dynamics

3.1 The algorithm

Given a set of neural networks, one expects to get a dissimilarity matrix, DissimilarityMatrix.
Therefore, for each pair of networks in the set, the algorithm tries to map the neurons from
the first one to the neurons in the second one and estimate how fit the match is.

The following naming convention has been used to describe the algorithm:

• Scalars – italic font, starting with a lower-case letter (e.g. dissimilarity).

• Vectors/matrices/sets – italic font, starts with a capital letter (e.g. Networks).

• Functions – plain font, all letters lower-case letters (e.g. neurosim).

Below the most important variables and functions are described:

• Networks – an array containing sets of neural network time series (1 set per creature).

• DissimilarityMatrix – a square matrix containing network dissimilarity values.

• NeuronMatrix – a temporary matrix helpful in finding a good neuron match.

3

• Effectors – a set of neuron types considered as effectors.

• neurosim – a similarity evaluation function (described after the algorithm).

• neurons(Network, Types) – extracts neurons of specified types from a neural network.

• matrix(sizeX, sizeY) – creates an empty matrix of the requested size.

• rmv(Matrix, col(value)) – removes a column that contains a specified value from the
matrix. A column is removed even if many columns contain the same value, in such case
the column with the lowest index is removed. In order to simplify the algorithm such
features have not been presented in the code listing.

• rmv(Matrix, row(value)) – like rmv(Matrix, col(value)), except that it removes a row
instead of a column.

1: Networks← loadData()
2: DissimilarityMatrix← matrix(|Networks|, |Networks|)
3: for i = 1..|Networks| − 1 do
4: for j = i + 1..|Networks| do
5: CommonNeuronTypes← (types(Networks[i])∪ types(Networks[j]))∩ Effectors
6: dissimilarity ← 0
7: maxNeuro← max(|neurons(Networks[i], Effectors)|, |neurons(Networks[j], Effectors)|)

8: for k = 1..|CommonNeuronTypes| do
9: Neuronsi ← neurons(Networks[i], CommonNeuronTypes[k])

10: Neuronsj ← neurons(Networks[j], CommonNeuronTypes[k])
11: NeuronMatrix← matrix(|Neuronsi|, |Neuronsj |)
12: curDif ← abs(|Neuronsi| − |Neuronsj |) · penaltyV alue
13: for l = 1..|Neuronsi| do
14: for m = 1..|Neuronsj | do
15: NeuronMatrix[l][m]← neurosim(Neuronsi[l], Neuronsj [m])
16: end for
17: end for
18: while rows(NeuronMatrix) > 0 ∧ cols(NeuronMatrix) > 0 do
19: bestMatch← min(NeuronMatrix)
20: curDif ← curDif + bestMatch
21: rmv(NeuronMatrix, row(bestMatch))
22: rmv(NeuronMatrix, col(bestMatch))
23: end while
24: dissimilarity ← dissimilarity + curDif
25: end for
26: NotMatched← neurons(Networks[i]∪Networks[j], Effectors\CommonNeuronTypes)

27: penalty ← |NotMatched| · penaltyV alue
28: DissimilarityMatrix[i][j]← dissimilarity+penalty

maxNeuro
29: end for
30: end for

The neurons are grouped according to their type (lines 9-10), thus a neuron may be compared
only to a neuron of the same group (i.e., “bend muscles” are not compared to “rotation
muscles” because their role is usually different). When the same type of groups is extracted
from both networks, a penalty value proportional to group size difference is added to the
overall network pair dissimilarity (lines 26-27). After that, a temporary neuron dissimilarity

4

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 50 100 150 200 250 300 350 400 450 500

Elilis / bend muscle 4

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 50 100 150 200 250 300 350 400 450 500

Ymiput / bend muscle 4

Figure 1: Corresponding neuron outputs from two related creatures.

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

S
q
u
a
re

 d
if
fe

re
n
c
e

Sample num.

Square difference
Average square difference

Figure 2: Square error function of the corresponding neuron outputs.

matrix is evaluated by the neurosim, which is the mean-square error function that operates on
raw neuron outputs, or on Fourier transform of neural outputs. In the next phase, in order to
ensure that the comparison is symmetric, each iteration selects the best match (line 19) and
removes the appropriate rows and columns from the neuron dissimilarity matrix (lines 21-22).
When this process is completed, the dissimilarity value is added to the global dissimilarity
(line 24). The total normalized network dissimilarity is then assigned to the appropriate cell
in the DissimilarityMatrix (line 28).

3.2 Illustrative examples

The following examples use creatures from the Framsticks simulator [18, 17]. The simulator
models three-dimensional structures made from “parts” and “joints” (sticks). Open-source
SDK is provided [16] along with a number of tools to facilitate the manipulation of genotypes
and the transformation of such 3D models.

The first example presents the results of comparing networks with a fixed topology. Only
neuron input weights may differ. Such situation usually occurs in a short-term evolution, thus
there is a need to determine if original and evolved creatures are alike.

Fig. 1 presents the output time series of two corresponding neurons (the probability that
the algorithm matches them together is significant). Although they are not the same, the trend
is similar. Fig. 2 contains the square error function of these time series. The mean square
error of this pair equals 0.47. The normalized MSE is an element of the global dissimilarity
value. Assuming that other neurons produce a similar MSE values, the dissimilarity of the
analyzed pair would be ≈ 0.12, which is a fair result.

5

N

N

G

N

G N

A

A

B

Figure 3: The model of the “Rolling blender” creature [18, 17] with body sticks depicted as
lines. Effectors (muscles) are depicted as red squares, and sensors (“G” for gyroscope) are
green. Standard neurons (“N”) are blue.

A

A B

Figure 4: Rolling blender’s neural network (effectors A on the left, B on the right).

The second example shows the effects of comparing neural networks which significantly
differ in output neuron count (the second network has twice as many effectors as the first
one). In such cases, the metric imposes a penalty on the similarity value, thus the dissimilarity
increases. Assuming without the loss of generality that there is exactly one type of output
neurons, the minimal dissimilarity value for networks A and B equals ABS(|A|−|B|)

MAX(|A|,|B|) , where |A|
and |B| indicate the power of the output neuron set of networks A and B respectively. Figure 3
presents an example model of two creatures. The first creature contains only effectors marked
as A, while the second one contains effectors A and B (networks associated with these effectors
are presented on Fig. 4). These two creatures are expected to have a low dissimilarity value:
their physical models are exactly the same, they only differ by 5 neurons (2 effectors), yet
their activity remains similar (they keep rolling in the same manner). Even if the additional
neurons have no affect on the agents performance, the dissimilarity value exceeds 0.5. In this
example two additional effectors mean that the half of the total effectors cannot be matched.
The penalty in such a situation is high and thus the dissimilarity value will be inadequate
compared to the subjective dissimilarity produced by a human expert.

3.3 Fourier window size and its impact on the results

In general, the series may not be periodic, thus the frequency domain representation may
contain noise and it may be hard to determine what window size provides sufficient information
about the analyzed series. The experiment has been performed to measure the information
gain from increasing windows size. A random set of 10 neural networks has been selected, upon
which the algorithm was executed with a different Fourier window size: 4, 16, 64, 256, 1024.

6

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

Figure 5: Relative information precision change, Fourier window increased: 16/4, 64/16,
256/64, 1024/256, respectively.

Each matrix (except the first one) has been divided by the matrix from the predeceasing test.
The matrices have a similar value range, therefore dividing their elements by elements from
another matrix gives the relative dissimilarity change. If increasing the window would not
increase information precision, the relative dissimilarity change should be 1. The information
change matrices are presented on Fig. 5. It may be observed that the information precision
is lowest in the top-left matrix. Increasing window size beyond 64 seems not to improve
the result quality in a dramatic manner, thus the window size of 100 has been selected for
experiments. This should ensure good quality of results: the set of test creatures was derived
from the experiment population, and each individual had a number of effectors that affected
the evaluation, thus the choice of the window size is statistically justified.

3.4 Properties

A measure d(i, j), where i and j are neuron output time series, may be considered a metric if
the following conditions are satisfied:

(a) d(i, j) > 0

(b) d(i, j) = d(j, i)

(c) d(i, j) = 0⇔ i = j

(d) d(i, k) 6 d(i, j) + d(j, k)

The mean square error function prevents the result from being a negative value, which satisfies
condition (a). Condition (b) requires that each pair of elements has exactly one dissimilarity
value, regardless of the element order. This condition is also satisfied, a greedy algorithm
ensures that every time a pair of networks is compared, the same neuron match is generated,
thus w dissimilarity value remains unchanged. Condition (c) states that a dissimilarity value
is 0 if and only if a creature is compared to itself (or any other creature that is by any means

7

equal). The algorithm returns a 0 dissimilarity value when each pair of neuron may be perfectly
matched, which indeed indicates equality on this level of abstraction. The final condition (d)
requires the triangle inequality to be fulfilled. Unfortunately this cannot be accomplished
due to the characteristics of the used methods and the neuron outputs being real numbers.
A simple hypothetical counter example for this condition can easily be generated. Let there
be three creatures i, j and k, each having only one effector. For simplicity let us consider
that the simulation lasted one time unit and generated a scalar for each neuron. The output
values are 1,0,−1 for i,j,k respectively, thus d(i, j) and d(j, k) equals 1. d(i, k) on the other
hand equals 4 (2 squared), which results in d(i, k) � d(i, j) + d(j, k). This means that the
proposed measure cannot be considered strictly a metric. An experiment has been made to
evaluate how many comparison pairs satisfy this condition in practice. A dissimilarity matrix
has been calculated for all evolved creatures (247 unique creatures). From this set a random
ordered triple (a, b, c) has been selected 10.000 times. A test has been considered positive
when d(a, c) 6 d(a, b)+d(b, c). According to this experiment condition (d) is fulfilled in 99.2%
of cases.

The proposed measure puts most impact on the size of the neural network, and therefore
creatures with significantly different brain size tend to have a high dissimilarity value. This is
justified by the fact that complexity of a neural network is related to its size.

The method is vulnerable to signal transformations. Comparing similar periodic impulses
with different frequency and amplitude (for example, bigger creatures have slower but stronger
bending muscles) may give a high mean square error and thus produce a high dissimilarity
value. The Discrete Fourier Transformation (DFT) method is more suitable for handling some
affinity transformations (like, for example, signal offset). On the other hand, the frequency
domain approach is vulnerable to irregular signal peaks that produce distortion.

3.5 Time complexity

The time complexity of the algorithm is dependent on the characteristics of compared neural
networks. Comparing c creatures in order to create a dissimilarity matrix requires exactly
c(c−1)

2 comparisons. Let us define g – the number of neuron types in all creatures, n – the
average number of neurons per neuron type, and t – simulation time (the number of samples
in time series). Each comparison consists of two phases: calculating the penalty for compar-
ing networks of different size, and evaluating a (suboptimal) mean square error value for the
appropriate neuron sets. Because penalty calculation performs only simple arithmetic opera-
tions on neuron type cardinality, its complexity is O(g). Evaluating the minimal mean square
error of 2 neurons requires t operations; a greedy algorithm performs this procedure at most
n2 times for each neuron group. To sum up, each comparison between two neural networks
requires g(1 +n2t) operations, thus the computational complexity of running the algorithm is
O(c2gn2t).

3.6 Penalty function for networks with different number of effectors

As it was mentioned in the previous sections, each comparison requires calculating a penalty
function for comparing networks of different size, and a dissimilarity function for neuron
output signals. For the purpose of presented experiments, the penalty function imposes a
maximal possible dissimilarity value for each neuron that exceeds the minimal cardinality of
the respective neuron groups for compared creatures. This approach makes neural networks
with a significantly different number of elements unlike: a creature that has two legs (2 sets of
muscles) has a greater chance to be similar to another two-legged creature than to a six-legged
creature.

Another approach assumes that the dissimilarity value for each pair of neurons has been
already calculated, and this would allow the penalty function to provide a value equal to the
average (or median) of the calculated set. This approach is quite intuitive, as we expect a

8

NT

N

N

NT

NNN
T

N

N

G

NT

NT

GN

NN

Figure 6: “Fast lizard” and “Scorpion” morphologies.

0.0 0.04466

C
re

at
ur

e
co

un
t

Fitness range

Land creature fitness
Water creature fitness

0.0 0.00904461

C
re

at
ur

e
co

un
t

Fitness range

Land creature fitness
Water creature fitness

Figure 7: Fast lizard and Scorpion fitness distribution.

long snake to be similar to a short snake despite the fact that they differ in size, because the
excessive effectors have a common function with primary ones.

It was also considered not to use a penalty function at all. Although there are examples
that justify this variant, in general this approach is weak. The lack of a penalty function would
surely increase the similarity of creatures with large differences in the number of neurons, as
a small set of neurons has a greater chance to find a good match in a much larger set.

Each penalty function variant has its positive and negative aspects. The proposed algo-
rithm uses the first type – imposing a maximal possible penalty. The motivation for this
choice is that it is more acceptable not to discover similarity between similar creatures, than
to discover it between differing ones.

4 Application in automated analysis

Just as in the previous sections, here simulated creatures come from the Framsticks sys-
tem [18, 17]. In all experiments, the morphology of the body was fixed (not modified during
optimization), and only specific aspects of the neural network were subject to change. In
terms of performance/fitness, we consider average velocity of creatures.

4.1 Fixed NN topology

The first set of creatures had a fixed neural network topology, and the body structure was
fixed for each set of creatures: scorpions, and fast lizards (Fig. 6). Performance of each group
was evaluated in two environments: with no water and with a high water level. The second
environment has a greatly decreased gravity compared to the first one. The fitness distribution
of the analyzed groups is presented in Fig. 7.

9

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

fastlizard / water
fastlizard / land

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003

fastlizard / water
fastlizard / land

Figure 8: Fast lizard dissimilarity matrix mapped on a 2D surface – methods: raw MSE
(24.6% of the total variance preserved) and DFT (25.5% of the total variance preserved).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

Figure 9: Fast lizard correlation analysis – methods: raw MSE (r = 0.12) and DFT (r = 0.11).

The dissimilarity matrix of neural signals of the fast lizards was scaled into 2 dimensions
and presented on Fig. 8. It may be observed that creatures from different environments
may be easily distinguished. After executing the classical multidimensional scaling procedure,
creatures from each environment have a significantly different medoid position, yet there are
many outliers that make linear separation impossible. The “scorpion” dissimilarity is presented
on Fig. 11. In this experiment the two environments have been separated in a better manner.
Furthermore it can be observed (especially from the DFT methods output) that some scorpions
from the water environment are more similar to scorpions from the land environment, than
to other water scorpions. These usually have significantly lower fitness value, thus this effect
is justified.

Global convexity analysis (Fig. 10) shows whether creatures fitness correlates with their
similarity. Since the histograms of these groups are known (Fig. 7), these groups can be easily
distinguished. Analysing the RAW method graph for fast lizard population (Fig. 10), one
can see that the regression slope is approximately zero. Furthermore, fast lizard similarity-
fitness correlation analysis (Fig. 9) gives the same conclusion. The DFT methods indicates
otherwise: the regression slope is negative with reference to the dissimilarity value, thus it
has a positive correlation with the similarity measure. The scorpion (Fig. 13) analysis also
indicates correlation. The Pearson product-moment correlation coefficient (absolute value)
exceeds 0.5 which confirms the observation. This means that creatures from the currently
analyzed groups tend to be affinity to creatures with a similar velocity value.

10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 s
im

ila
rit

y
to

 fi
tt

er
 c

re
at

ur
es

Creature fitness

Creature
Linear regression

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 s
im

ila
rit

y
to

 fi
tt

er
 c

re
at

ur
es

Creature fitness

Creature
Linear regression

Figure 10: Fast lizard dissimilarity global convexity measurement – methods: raw MSE and
DFT.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

scorpion / water
scorpion / land

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

scorpion / water
scorpion / land

Figure 11: Scorpion dissimilarity matrix mapped on a 2D surface – methods: raw MSE (14.7%
of the total variance preserved) and DFT (59.0% of the total variance preserved).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

Figure 12: Scorpion correlation analysis – methods: raw MSE (r = −0.53) and DFT (r =
0.57).

11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
ve

ra
ge

 s
im

ila
rit

y
to

 fi
tt

er
 c

re
at

ur
es

Creature fitness

Creature
Linear regression

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
ve

ra
ge

 s
im

ila
rit

y
to

 fi
tt

er
 c

re
at

ur
es

Creature fitness

Creature
Linear regression

Figure 13: Scorpion dissimilarity global convexity measurement – methods: raw MSE and
DFT.

G G

Figure 14: “Minisnake” morphology: initially, muscles work in a different plane in each group
of creatures.

4.2 Variable NN topology, two variants of body

The second set of creatures contains organisms that do not differ in body morphology, yet
their neural networks structures have been evolved and contain different numbers of neurons
(Fig. 14). The set consists of two groups of creatures that differ in initial spatial orientation.
Therefore, one group has been named ‘vertical’, and the second one ‘horizontal’. Since the
body capabilities are similar for both groups, the fitness distribution is also alike (Fig. 15).

The dissimilarity matrix mapped on a 2D surface is presented on Fig. 16. Unlike in the
previous experiment, it is difficult to find any patterns in the creature distribution, even though
mapping of the DFT results preserved over 70% of the total variation. The indiscernibility
of creatures in this case may be a result of their morphological similarity. It may also mean
that both groups are very much alike, yet executing the multidimensional scaling procedure

0.0 0.0248121

C
re

at
ur

e
co

un
t

Fitness range

Vertical creature fitness
Horizontal creature fitness

Figure 15: Minisnake fitness distribution.

12

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

minisnake / horizontal
minisnake / vertical

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

minisnake / horizontal
minisnake / vertical

Figure 16: Snake dissimilarity matrix mapped on a 2D surface – methods: raw MSE (52.8%
of the total variance preserved) and DFT (70.4% of the total variance preserved).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

Figure 17: Snake correlation analysis – methods: raw MSE (r = −0.03) and DFT (r = −0.02).

scales minor varieties into major differences. However when these groups are compared to
more diversified ones a greater similarity may be observed (Sect. 4.4). The fitness-similarity
correlation graph is presented in Fig. 17. Most of the compared pairs are arranged vertically
along a few dissimilarity value. This is a result of comparing very primitive organisms with
simple networks, which contain few effectors: effector type and differences in number have
the highest impact on the dissimilarity value. Since there are far more compared pairs than
structurally different pairs of networks, differences have practically a discrete domain. The
points are arranged into vertical stripes, and these groups lack correlation between similarity
and performance (Pearson correlation ≈ 0).

4.3 Variable NN topology

The ‘star’ set of creatures has been evolved with no restrictions regarding neural networks.
Unlike the previous experiment, only one variant of body exists (Fig. 18), but the experiments
have been performed in different environments (similarly to the Fast lizard and Scorpion
groups). There are small disproportions between land and water fitness distribution (Fig. 19);
most organisms have a low performance value.

Analysing Fig. 20 it may be observed that the land and water creatures are mixed and
no clusters may be isolated. This case is similar to the previous experiment, only the circum-
stances (not restricted evolution) greatly increased the differences between individuals. There
is also a positive correlation between dissimilarity and fitness (Fig. 21), which indicates that
creatures are more frequently similar to creatures with a different performance value. This
may be a result of the evolutionary methods used to generate the creatures. When some crea-
tures were derived from the same parent, they may be considered similar by the algorithm,

13

G

G G

N

N

G

N

Figure 18: The “Star” morphology.

0.0 0.0138047

C
re

at
ur

e
co

un
t

Fitness range

Land creature fitness
Water creature fitness

Figure 19: “Star” fitness distribution.

however chances that all of them will achieve the same performance value are low. Usually
most of the created organisms are going to be evolutionary ‘dead-points’ (poor local optima),
but a few may be considered fit – which justifies the results. A correlation value of ≈ 0.15
does not indicate a linear relation between the parameters.

4.4 Mixed populations

Each of the groups considered in earlier experiments contained similar creatures, because in
each experiment they were evolved from a common ancestor. These groups were now mixed

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

star / water
star / land

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

star / water
star / land

Figure 20: “Star” dissimilarity matrix mapped on a 2D surface – methods: raw MSE (42.7%
of the total variance preserved) and DFT (48.9% of the total variance preserved).

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

di
ffe

re
nc

e
[n

or
m

al
iz

ed
]

Creature dissimilarity

dissimilarity - fitness difference
Linear regression

Figure 21: “Star” correlation analysis – methods: raw MSE (r = 0.15) and DFT (r = 0.16).

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

star
scorpion
fastlizard

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

star
scorpion
fastlizard

Figure 22: Mixed land populations mapped on a 2D surface – methods: raw MSE (59.3% of
the total variance preserved) and DFT (84.4% of the total variance preserved).

in order to obtain results from a heterogeneous set. Fig. 22 and 23 present results for land
and water environments respectively. It may be observed that clusters are formed in the
comparison process. Yet there are exceptions to this: some creatures, especially from the Star
group, are scattered in a relatively large radius and away from other creatures. This may be
caused by a non-restricted evolution model applied to this creature group.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

star
minisnake / vertical

scorpion
minisnake / horizontal

fastlizard

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

star
minisnake / vertical

scorpion
minisnake / horizontal

fastlizard

Figure 23: Mixed water populations mapped on a 2D surface – methods: raw MSE (53.3% of
the total variance preserved) and DFT (68.0% of the total variance preserved).

15

5 Conclusions and further work

Based on these preliminary results it may be said that the proposed method of comparing
neural network dynamics gives relatively objective information about their similarity. It works
exceptionally well when potentially similar organisms have a common neural network struc-
ture, which greatly enhances neuron matching accuracy. On the other hand, creatures left
for unrestricted evolution tend to have a more unpredictable similarity value of their neural
network activity. All in all, due to a relatively low computational complexity, the proposed
tool is already helpful – the generated dissimilarity matrices may not be perfect, but they still
provide a general overview of the analyzed populations.

The next step in developing a successful similarity measure that estimates neural network
dynamics is to individually study evolved creatures and their neural signals, and point out
the desired properties of the ideal measure. The goal is to try to capture and then mimic
the behavior of a human expert that would estimate similarity of a series of output values
in simple networks. Constructing specific boundary cases may be helpful in this approach as
well.

The properties of the measure could be improved by increasing the depth of its analysis.
One example of this would be to analyze and try to match subnetworks. Another example
would be to assign neurons to groups not only based on their type, but also on their function
– i.e., if a neural network module that controls a leg consists of a bending and a rotation
muscles, this relation should be observed. Such an ability would decrease the penalty when
comparing a four-legged creature and a six-legged creature that employ similar control mod-
ules. Another way to improve the algorithm is to use additional information – e.g., to consider
body structure [13, 10, 14] to better match sensors and effectors between two networks, or to
consider behavioral traits [15]. It is however important not to increase the complexity of the
matching procedure too much, as the similarity measure needs to be fast if it is to be applied
to analyze large sets of neural networks.

References

[1] Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of tech-
niques for extracting rules from trained artificial neural networks. Knowledge-Based Sys-
tems, 8:373–389, 1995.

[2] George Box and Gwilym Jenkins. Time Series Analysis: Forecasting & Control. Holden-
Day, 1990.

[3] David R. Brillinger. Time Series: Data Analysis and Theory. SIAM, 2001.

[4] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods. Springer,
1991.

[5] James Durbin and Siem Jan Koopman. Time Series Analysis by State Space Methods.
Oxford University Press, 2001.

[6] Stephen Grossberg. Neural Networks and Natural Intelligence. MIT Press, 1988.

[7] G. Gudmundsson. Time-series analysis of imports, exports and other economic variables.
Journal of the Royal Statistical Society, 134:383–412, 1971.

[8] L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices.
Molecular Biology, 223:123–138, 1993.

[9] S. Imai. Cepstral analysis synthesis on the mel frequency scale. In Acoustics, Speech, and
Signal Processing, IEEE International Conference on ICASSP ’83., 1983.

16

[10] Maciej Komosinski. Applications of a similarity measure in the analysis of populations of
3D agents. Journal of Computational Science, 21:407–418, 2017. URL: http://dx.doi.
org/10.1016/j.jocs.2016.10.004, doi:10.1016/j.jocs.2016.10.004.

[11] Maciej Komosinski and Andrew Adamatzky, editors. Artificial Life Models in Soft-
ware. Springer, London, 2nd edition, 2009. URL: http://www.springer.com/

978-1-84882-284-9, doi:10.1007/978-1-84882-285-6.

[12] Maciej Komosinski, Grzegorz Koczyk, and Marek Kubiak. On estimating similar-
ity of artificial and real organisms. Theory in Biosciences, 120(3-4):271–286, De-
cember 2001. URL: http://dx.doi.org/10.1007/s12064-001-0023-y, doi:10.1007/
s12064-001-0023-y.

[13] Maciej Komosinski and Marek Kubiak. Quantitative measure of structural and geometric
similarity of 3D morphologies. Complexity, 16(6):40–52, 2011. URL: http://dx.doi.
org/10.1002/cplx.20367, doi:10.1002/cplx.20367.

[14] Maciej Komosinski and Agnieszka Mensfelt. A flexible dissimilarity measure for ac-
tive and passive 3D structures and its application in the fitness–distance analysis. In
Paul Kaufmann and Pedro A. Castillo, editors, Applications of Evolutionary Com-
putation, pages 106–121, Cham, 2019. Springer. URL: http://www.framsticks.

com/files/common/DissimilarityMeasure3DStructuresFitnessDistance.pdf, doi:

10.1007/978-3-030-16692-2_8.

[15] Maciej Komosinski and Konrad Miazga. Measuring properties of movement in populations
of evolved 3D agents. In Harold Fellermann, Jaume Bacardit, Ángel Goñi-Moreno, and
Rudolf M. Füchslin, editors, Artificial Life Conference Proceedings, pages 485–492. MIT
Press, 2019. doi:10.1162/isal_a_00208.

[16] Maciej Komosinski and Szymon Ulatowski. Framsticks SDK (Software Development Kit).
URL: http://www.framsticks.com/sdk.

[17] Maciej Komosinski and Szymon Ulatowski. Framsticks: Creating and understanding
complexity of life. In Maciej Komosinski and Andrew Adamatzky, editors, Artificial Life
Models in Software, chapter 5, pages 107–148. Springer, London, 2nd edition, 2009. URL:
http://www.springer.com/978-1-84882-284-9.

[18] Maciej Komosinski and Szymon Ulatowski. Framsticks web site, 2019. URL: http:

//www.framsticks.com.

[19] David Stephen Pollock. A Handbook of Time-Series Analysis, Signal Processing and
Dynamics. Academic Press, 1999.

[20] S. D. Stearns. Digital Signal Analysis. Prentice-Hall, 1990.

[21] Tim P. Vogels, Kanaka Rajan, and L. F. Abbott. Neural network dynamics. Neu-
roscience, 28(1):357–376, 2005. URL: http://www.annualreviews.org/doi/abs/10.

1146/annurev.neuro.28.061604.135637?journalCode=neuro.

[22] T. Wigley, K.R. Briffa, and P.D. Jones. Average value of correlated time series, with
applications in dendroclimatology and hydrometeorology. Journal of applied meteorology
and climatology, 23:201–234, 1984.

[23] T. Yuzuriha. The autocorrelation curves of schizophrenic brain waves and the power
spectrum. Psychiatria et Neurologia Japonica, 26:911–924, 1960.

17

http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://www.springer.com/978-1-84882-284-9
http://www.springer.com/978-1-84882-284-9
http://dx.doi.org/10.1007/978-1-84882-285-6
http://dx.doi.org/10.1007/s12064-001-0023-y
http://dx.doi.org/10.1007/s12064-001-0023-y
http://dx.doi.org/10.1007/s12064-001-0023-y
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://www.framsticks.com/files/common/DissimilarityMeasure3DStructuresFitnessDistance.pdf
http://www.framsticks.com/files/common/DissimilarityMeasure3DStructuresFitnessDistance.pdf
http://dx.doi.org/10.1007/978-3-030-16692-2_8
http://dx.doi.org/10.1007/978-3-030-16692-2_8
http://dx.doi.org/10.1162/isal_a_00208
http://www.framsticks.com/sdk
http://www.springer.com/978-1-84882-284-9
http://www.framsticks.com
http://www.framsticks.com
http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.28.061604.135637?journalCode=neuro
http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.28.061604.135637?journalCode=neuro

	Introduction
	Possible approaches to comparing neural networks and their dynamics
	Numerical measure of similarity of neural network dynamics
	The algorithm
	Illustrative examples
	Fourier window size and its impact on the results
	Properties
	Time complexity
	Penalty function for networks with different number of effectors

	Application in automated analysis
	Fixed NN topology
	Variable NN topology, two variants of body
	Variable NN topology
	Mixed populations

	Conclusions and further work

