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Krzysztof Rosiński Pawe l Rych ly

Technical Report RA–1/2019

Institute of Computing Science
Poznan University of Technology

Abstract

In this work we introduce eight well-defined properties of movement that can be calcu-
lated for morphologies of simulated agents, robots, or living creatures. The morphology of
an agent is assumed to consist of connected parts. The properties are then calculated as
aggregations of changes in position of these parts in time. We discuss the characteristics of
these properties of movement, apply them as components of a dissimilarity measure, and
demonstrate how they can be applied to the analysis of populations of simulated agents and
their locomotion patterns. This report analyzes the dissimilarities between creatures with
fixed morphologies and evolved controllers, and also between creatures with both morpholo-
gies and controllers evolved towards simple evolutionary goals. The correlation between the
dissimilarity of creatures (measured as a weighted sum of the properties of the creatures)
and the dissimilarity of their fitness is also discussed.
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1 Introduction

Over a million of organism species have been identified worldwide, each species having a specific
body morphology and a more or less sophisticated nervous system. Many of these species have
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Figure 1: Sample 3D morphologies compatible with the model considered in this work. Left:
two morphologies with visible parts (vertices) and their connections (edges). Right: an 8 × 8
sample of morphologies available in the Framsticks distribution [15].

once been a subject of a thorough observation and research. Scientists have gathered vast
knowledge about existing organisms, thus it is possible to classify them with regard to various
criteria.

However, imagine a new species is created with the use of genetic engineering, or is discov-
ered, or a robot or a cyborg is designed and built. When one wants to classify such a creature,
it turns out that the database of previously known creatures contains no information about it,
and thus there is a need to gather or evaluate properties that describe this new organism.

When a person encounters an unknown creature, the first thing they do is perceiving it [21,
5]; in this process many qualities are investigated: the overall appearance, body morphology,
and movement patterns [3, 23, 24]. While there are already some properties that are widely used
for distinguishing between different body plans or types of movement (e.g., gait patterns), they
are typically tailored towards specific kinds of creatures (e.g., quadrupeds, birds, or humans [16])
and they do not generalize well to all possible body plans and movement strategies. This work
introduces a set of well-defined properties that describe movement patterns with scalar values,
and demonstrates how these values can be used to compare and classify simulated creatures
based on their locomotion and changes in body shape. Additional analyses of the properties
introduced in this paper and related experiments are described in [11].

This work is a part of a larger undertaking started nearly 20 years ago to develop a set
of similarity measures that concern various aspects of artificial and real organisms, in order
to support human researchers in the analysis of large populations of such organisms. This
is especially important because of the development of more and more sophisticated artificial
intelligence agents, robots and artificial life forms. Large numbers of such entities cannot be
investigated manually by humans, as it would require a lot of time and the results would be
subjective and inconsistent. The aspects of similarity that have been earlier investigated include
fitness, genetics [14], morphology [7, 8, 10, 6, 9], and neural network dynamics [12]; this work
concerns behavioral traits.

2 Model of morphology

Movement properties introduced in this report can be used for animals, robots or simulated
agents that consist of connected parts. The information about connections between parts is
not used during the calculation of the properties. It is assumed that the fact that parts are
connected influences the dynamics of their position and orientation in space, which is used
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as a fundamental information when calculating the properties of movement. The supported
morphology model is compatible with the legacy Framsticks [15, 14] ball-and-stick models [13],
as illustrated in Fig. 1.

3 Numerical evaluation of locomotion patterns

3.1 Low-level raw data

Each simulation of a creature provided three series of values. Each series consisted of the
following values, respectively:

• The current central point (x, y, z) – can be the center of mass, the geometric center, or
the center of the bounding box of the creature.

• The dispersion in the xy plane: dxy.

• The dispersion in the z dimension: dz.

Each central point is described by three coordinates corresponding to the three dimensions.
Calculating dispersions requires some elementary data processing. Since creatures are made of
distinguishable elements called parts (connected by joints), we define creature “dispersion” in
the appropriate plane as the weighed standard deviation [17] of its body parts. Let c be the
central point of a creature and P be the set of all body parts. The dispersion in the xy plane
is evaluated as follows (dispersion in the z dimension is calculated analogously):

dxy =

√∑
p∈P weight(p) ∗ ((p.x− c.x)2 + (p.y − c.y)2)∑

p∈P weight(p)
(1)

where weight(p) is the importance of part p. In the following experiments, weight(p) is the
mass1 of part p. This reflects the idea that the movement of the heavy body parts, such as a
head, affects the values of the properties more than the movement of the light body parts, such
as a finger. Alternatively, if one were interested in a purely visual or geometrical description of
body movements, the value of weight(p) could be set to 1 for all parts p.

3.2 High-level description of movement

These raw data series are hard to interpret directly; they form a basis for higher-level descriptors
of movement. We have introduced eight properties describing different qualities of locomotion:

1. Average error of linear correlation of position in the xy plane (err line xy). Low value
indicates movement similar to a straight line.

2. Horizontal oscillation factor (var dis xy) – standard deviation of dispersion in xy divided
by mean dispersion in xy.

3. Vertical oscillation factor (var dis z ) – standard deviation of dispersion in z divided by
mean dispersion in z.

4. Vertical-to-horizontal oscillation ratio (sd dis z xy) – mean ratio of dispersion in z to
dispersion in xy.

5. Mean speed in xyz (inst speed).

6. Spectral Flatness Measure (sfm) defined as a geometrical mean of frequency domain of
xyz speed divided by its arithmetical mean.

1In the simulations reported here, the mass of each part was always equal to the number of coincident joints.
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(a) No curvature (a straight line).
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(b) Low curvature.
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(d) Comparison of err line xy.

Figure 2: The relationship between the path of movement and the value of err line xy.

7. The frequency of the highest amplitude of the xyz speed (f max ).

8. The maximal correlation of the xyz speed signal with its offset (autocorr max ).

The definition and calculation of these properties refer to basic concepts in linear algebra [20,
4, 19], statistics and regression analysis [1, 18] and signal analysis [22, 2]. Short descriptions of
the properties and the corresponding equations are presented below.

In the following equations, Dxy and Dz are dispersion series in planes xy and z respectively,
and σ denotes standard deviation. Average values are overlined, for example dxy means the
average dispersion in the xy plane. Let us define E(a, b) as the Euclidean distance between
points a and b, ci being the i-th sample of a creature body center series C. Sets X,Y, Z contain
series of the center points in a particular dimension.

1. The average error of two-dimensional euclidean regression in the xy plane (err line xy)
tells us whether a creature changes its direction during simulation or oscillates around
the path of movement.

To calculate this property it is necessary to find an euclidean regression line y = ax+b [27].
That is the line for which a sum of the squares of distances from points of trajectory is
minimal. A distance εi between a point of trajectory (xi, yi) and the regression line may
be calculated in the following way:

εi =

∣∣∣∣yi − (axi + b)√
a2 + 1

∣∣∣∣ (2)

The average error is calculated as a mean value of these distances.

To illustrate this property three trajectories with different shape were generated. Fig. 2
illustrates a comparison of these trajectories.
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2. The horizontal oscillation factor evaluates creature movement dynamics in the xy plane
(var dis xy). A creature that has a large horizontal oscillation factor tends to put a lot
of effort in the horizontal limb moves like walking, crawling and snake-style swimming.
The horizontal oscillation factor may be evaluated as follows:

var dis xy =
σ(Dxy)

dxy
(3)

3. The vertical oscillation factor (var dis z ) may also be considered a simple indicator of a
type of movement. It is very similar to the horizontal oscillation factor, the difference
is that instead of the xy plane, the z dimension is used. Intuitively, a large vertical
oscillation factor may indicate a jumping type of movement, while smaller values may
characterize crawling creatures. The vertical oscillation factor may be calculated in the
following way:

var dis z =
σ(Dz)

dz
(4)

4. The vertical-to-horizontal oscillation ratio (sd dis z xy) may be interpreted as a combi-
nation of the vertical oscillation factor and the horizontal oscillation factors. Each of the
previously presented factors may be interpreted separately. In order to obtain a relative
combination of these two properties we divide one by the other. The denominators used
in var dis z and var dis xy properties have been dropped. The equation describing the
vertical-to-horizontal oscillation ratio is presented below:

sd dis z xy =
σ(Dz)

σ(Dxy)
(5)

To illustrate these three properties, two straight trajectories with different dispersions
series were generated. Fig. 3 illustrates relations between dispersion of movement and
values of the properties. Dispersion of movement in the first example changed more
dynamically in the xy plane, Fig. 3(a). Dispersion of the second movement changed more
dynamically in the z dimension, Fig. 3(b).

5. The mean instantaneous speed (inst speed) in xyz may be evaluated as follows:

v =

∑|C|
i=2 E(ci, ci−1)

|C|
(6)

Before the control systems of creatures were activated, there was a wait-for-stabilization
period so that creature speed in the first time step t0 was always 0.

To illustrate mean speed property, a straight trajectory with a sinusoidal speed was
generated as shown in Fig. 4(b). In this example speed oscillates around the calculated
mean value (inst speed = 0.49765).

6. Spectral Flatness Measure (sfm) is one of two properties that uses the discrete Fourier
transform. This property technically evaluates the dynamics of a period of movement. If
the speed of a creature may be presented as a sinusoid then it is expected to have a low
sfm value. Creatures having irregular speed will have higher sfm value. The equation
used for evaluating the Spectral Flatness, along with predecessing operations, is presented
below. The first step is to calculate the displacement vector:

∆C = {c′i : c′i = E(ci+1, ci); ci ∈ C, i = 1..|C| − 1} (7)

Secondly, the Fourier transformation (DFT) is performed on the vector ∆C

F = DFT(∆C) (8)
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(a) Higher dispersion in the xy plane.
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(b) Higher dispersion in the z dimension.
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(c) Comparison of var dis xy.
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(d) Comparison of var dis z.
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(e) Comparison of sd dis z xy.

Figure 3: The relationship between dispersion values in the xy plane and the z dimension and
the values of var dis xy, var dis z and sd dis z xy.
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(b) Sinusoidal speed.
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(c) Random speed.
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Figure 4: The relationship between the shape of speed in time and the value of sfm.

Finally, the sfm is calculated.

sfm =
eln(F )

F
(9)

Fig. 4 illustrates the relation between the shape of the speed function and value of spectral
flatness measure. If the function of instantaneous speed is constant in time as in Fig. 4(a),
or sinusoidal in time as in Fig. 4(b), the value of sfm is lower. If the speed of an agent is
irregular as in Fig. 4(c), then the value of the sfm is higher.

7. The most significant frequency (the frequency with the highest amplitude, f max ) is a
simple property that provides information about the most prominent frequency in the
spectrum of the creature’s function of speed in time:

f max = arg max(F ) (10)

The arg max function returns the index of the highest value in a vector. This value
represents the most significant frequency (other than 0 Hz, technical aspects are not
presented in order to simplify the description). The f max property is illustrated in
Fig. 5.
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(a) Sinusoidal speed with frequency f1.
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(b) Sinusoidal speed with frequency 2 · f1.
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(c) Sinusoidal speed with frequency 4 · f1.
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(d) Comparison of f max.

Figure 5: The relationship between the frequency of the sinusoidal signal of creature’s speed
and the value of f max.

8. The maximal correlation of the xyz speed signal with its offset (autocorr max ) can be
calculated according to the algorithm:

1: Speed← vector(|C| − 1)
2: for i = 0..|C| − 3 do
3: Speed[i] = E(C[i], C[i+ 1])
4: end for
5: AutoCorr ← vector(|C|/2− 1)
6: acLen← |AutoCorr|
7: AutoCorr[0]← 1
8: for i = 1..acLen− 1 do
9: AutoCorr[i]←

corrcoef(Speed[0 : acLen], Speed[i : acLen+ i])
10: end for
11: firstBetter ← 0
12: for i = 1..acLen− 1 do
13: if AutoCorr[i] > AutoCorr[i− 1] then
14: firstBetter ← i
15: break
16: end if
17: end for
18: autocorr max←

max(AutoCorr[firstBetter : acLen])
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(b) Sinusoidal speed.
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(c) Random speed.
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(d) Comparison of autocorr max.

Figure 6: The relationship between agent’s speed and the value of autocorr max.

In this pseudocode, C is the vector containing the center point of the creature for each
time frame. Vectors containing elements from a specific range are represented by the
base vector name and a corresponding range in square brackets separated by a colon,
for example Speed[x : y] refers to a subvector containing elements from vector Speed
with indices from x to y (excluding y). The corrcoef function in line 9 calculates the
correlation coefficient between the original and the shifted vector. The for loop in lines
11-17 determines firstBetter – the index of the first local minimum in the AutoCorr
vector, plus one. The offsets lower than this index are then excluded from the search for
the highest correlation (line 18).

The autocorr max property is illustrated in Fig. 6.

The values of all the proposed properties have been visualized in Fig. 7 for agents from the
Scorpion (land), Fastlizard (land) and Star (land) populations. These populations were evolved
(with fixed morphology) starting from the creatures with the corresponding names; the geno-
types of Scorpion and Fast lizard are available in the Framsticks distribution [15], and Star was
a three-pointed regular star body defined by the XX(XX,XX) genotype.

3.3 Discussion of the properties

It would be desirable for all the properties introduced in the previous section to have the quality
of scalability. By scalability we mean the invariance of the values of properties in face of the
increased resolution of sampling of the points on the body of a creature. If the data series for
the creature contained samples from two evenly spaced points for each body part instead of
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Figure 7: Values of the proposed properties for three different populations (i.e., “species”) of
creatures.

just one point, the values of the properties should not change, or at least change only slightly,
with the magnitude of changes decreasing to zero as the resolution grows to infinity. This
quality would facilitate comparing the values of the properties between creatures of free-form
blob-like morphologies that are not necessarily made of easily distinguishable parts (modules).
Although such analysis was not performed in this report, it should be done in the future, and
the properties that are not scalable should be modified to achieve this quality.

Below, we include an additional discussion of the properties introduced in the previous
section.

err line xy As shown earlier, err line xy can distinguish between the trajectories of different
curvature. It is not however indifferent to the other parameters of the movement, such as the
speed of movement or the length of the considered signal. If the trajectory of the movement is
linearly approximable and the oscillations around the linear path are not growing in time, the
value of err line xy should asymptotically converge towards some specific value. An example
of such a behavior of the property for a sinusoidal trajectory with different speeds of movement
can be seen in Fig. 8. However, if the path of a creature cannot be approximated with a straight
line, the value of err line xy may not converge towards any value as the speed of the creature
(or the length of the signal) grows.

Another potential problem with this property comes from the assumption that the move-
ment of the creature takes place mostly in the horizontal plane. While that assumption is likely
to be true for walking creatures, it leads to ignoring an entire dimension of movement for the
flying and swimming creatures. This problem could be solved by extending the property to
a three-dimensional linear approximation of the path of movement err line xyz. That change,
however, would mean that for the walking creatures the shape of the terrain could influence
the exact value of err line xy, e.g. the value would be higher for a hilly terrain that it would
be for a flat surface.
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(b) Medium speed 2 · v1.
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(c) High speed 4 · v1.
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(d) Comparison of err line xy.

Figure 8: The relationship between the speed of movement and err line xy for a fixed sinusoidal
path of movement. Analogous results can be obtained for a constant speed of movement and
proportionally longer signals.

var dis xy, var dis z, sd dis z xy The dispersion of a creature used for calculating these
properties weighs each body part according to the physical weight of that part. That means
that two similar creatures with different weight distributions will be assigned different dispersion
values – the calculated dispersion value for a creature with a heavy core and light limbs will be
lower than it would be if the core of that creature was light and its limbs were heavy. Therefore,
var dis xy and var dis z assess no only the amount of movement in a given plane/dimension,
but the effort required to perform that movement.

The downside of this definition of dispersion is that two creatures with – seemingly – the
same movement may have different values of the dispersion-based properties. It is not clear
which approach would be more useful in distinguishing between different classes of movement –
perhaps both the weighted and the unweighted versions these properties should be considered
when comparing two types of movement.

inst speed This property calculates the average speed between two consecutive measurements
of the position of the creature, and therefore it can be affected by the frequency with which
the considered signal is being sampled.

It is important to note that high instantaneous speed does not imply high overall speed mea-
sured as displacement divided by time, although the opposite is true – in fact the instantaneous
speed determines the upper bound on the possible speed value as measured over longer periods
of time. Two examples of high instantaneous speed yielding low overall speed are the circular
motion (the creature regularly returns to its starting position) and the Brownian motion (the
creature randomly changes the direction of the movement, and so its displacement from the
initial position changes very slowly and irregularly). It could therefore be worth to extend the
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Figure 9: The relationship between the length of the signal and sfm for the random and the
sinusoidal speed in time. While the random speed in time has a similar amount of power in all
spectral bands, the sinusoidal speed in time contains only one frequency.

inst speed property to the average speed of the creature as a function of the length of the time
window. The shape of such a function would give one a better understanding of the dynamics
of the creature: for a constant linear motion such function would be constant, for the circular
motion the function would be clearly periodic, and for the Brownian motion the value of the
function would be irregularly decreasing. Although such a function would not be limited to a
single value and as such it would not be very concise, a number of new properties based on its
shape could be introduced.

sfm The exact value of sfm may depend on the length of the signal, especially for the more
regular movement with lower sfm values. The longer the considered signal, the wider the fre-
quency spectrum, and as the spectrum for a more regular movement will contain only a limited
number of spikes, increasing its length will decrease both the arithmetic and the geometric
means. The geometric mean will however decrease faster than the arithmetic mean, and so as
the length of the signal increases, the value of sfm will tend to decrease. This effect can be
seen in Fig. 9.

f max In order to find the frequency with the highest amplitude, a Fourier transform must
be used to generate the spectrum of the signal. However, before applying the Fourier transform
to the signal, one of a number of different window functions should be applied to that signal
in order to improve the properties of the resulting spectrum. Two of the most important
properties that can be modified by applying a window function to a signal are the resolution
and the dynamic range of the signal’s spectrum. The high resolution means that the strength of
the part of the spectrum corresponding to some frequency will not leak to the nearby frequencies
– it will however leak to the frequencies that are farther away. On the other hand, the high
dynamic range means that the spectrum of a frequency present in the signal will have its leakage
to the farther frequencies heavily reduced, at the cost of leaking to the nearby frequencies.

This trade-off, known as the spectral leakage, forces us to choose between the high resolution
and the high dynamic range of the spectrum. The high dynamic range is important mostly for
distinguishing weaker frequencies present in the signal. For the purpose of the f max property
we are however interested in the strongest frequency, and so we are willing to sacrifice the
dynamic range of the spectrum for its high resolution. Therefore, for the purpose of our
experiments we have used the rectangular window when preparing the signal for the Fourier
transform. The use of that window guarantees us the highest possible resolution of the resulting
spectrum.

For some of the considered creatures the highest component of the signal of the speed in
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time is the constant speed. In the case of these creatures, the non-zero frequencies are often very
low and show poor signal to noise ratio. To avoid assigning undeservingly high values of f max
to these creatures, the creatures for which the highest amplitude of the non-zero frequencies is
lower than 0.002 are assigned f max = 0.

The frequency spectrum of the speed signal can be multimodal, and multiple maxima can
have similar amplitudes. In such cases, the value of f max may depend on tiny differences
in simulation (such as different initial conditions or noise) and thus may change radically be-
tween evaluations. This is an undesired effect of using the maximum function. A better way
of calculating the dissimilarity between the frequency spectrums of the speed signals of two
creatures could involve the EMD (earth mover’s distance) measure [26]. Such a measure would
however be unfeasible as a descriptor of movement of each individual creature, as it describes
the relation between two creatures instead of the property of one of them.

autocorr max In order to calculate the value of autocorr max, a vector of the autocorrelation
values for various shifts must first be prepared. There are two main ways to calculate this vector.

In the first approach the entire available signal is always used to calculate the autocorrelation
for each shift. That means that when calculating the autocorrelation for some shift s ∈ [1;L/2],
we compare the segments of the original signal taken from ranges [0;L − s] and [s;L], where
L is the length of the full signal. The advantage of this approach is that each value of the
autocorrelation vector is calculated based on the full available data. The disadvantage is that
the bigger the shift, the lower the precision of the calculated value (i.e., the correlation is being
calculated for shorter segments) is going to be.

On the other hand, in the second approach the lengths of the segments of the signal that are
being compared (and therefore the precision of the resulting autocorrelation value) are fixed.
In this approach, when calculating the autocorrelation for some shift s ∈ [1;L/2], we compare
the segments of the signal taken from ranges [0;L/2] and [s;L/2 + s]. Although this allows for
a fixed precision of the calculations for the entire vector, that precision (and so the amount of
data used per shift) will on average be lower than in the first approach.

The comparison of the full autocorrelation vectors calculated using both approaches can
be seen in Fig. 10. Although there are some differences between the results obtained with the
two approaches described above, no clear repeatable characteristic patterns can be observed
for any of the approaches. It is therefore difficult to unambiguously determine which of those
two methods is better. For the purpose of this report, the second approach, which assumes the
fixed lengths of the compared vectors, is used.

3.4 Illustrative examples

Fig. 11 presents a comparison of some selected walking and swimming creatures available in
the Framsticks distribution [15].

The first of the selected walking creatures, the SlowSmellingPuller, performes a very sys-
tematic dragging motion – a single front leg repeatedly drags the rest of the body forward.
Although this creature does not move very fast (it has a medium value of inst speed), it moves
in a straight line (as it has a symmetrical body which is being dragged forward by a centered
front leg) and so its value of the err line xy is very close to zero. The high regularity of its move-
ment leads to a high value of autocorr max. Although the period of this creature’s movement
cycle is comparable to the period of the movement cycle of other creatures such as Frog#2, one
cycle of the movement of SlowSmellingPuller consists of two phases – the first one being the
pulling motion, and the second being the rebound which happens when the front leg is being
lifted. For that reason the value of f max for SlowSmellingPuller is about twice as high as it is
for Frog#2.

In contrast to the SlowSmellingPuller, the Speedy creature has a very high value of err line xy.
The reason for this is the curved path of the movement of the creature, which combined with
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(a) First approach – creature #1.
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(b) Second approach – creature #1.
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(c) First approach – creature #2.
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(d) Second approach – creature #2.
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(e) First approach – creature #3.
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(f) Second approach – creature #3.
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(g) First approach – creature #4.
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(h) Second approach – creature #4.

Figure 10: The autocorrelation vectors for five different creatures, calculated with two ap-
proaches.
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(b) A comparison of the selected swimming creatures.

Figure 11: Comparisons of some selected walking (walking.gen) and swimming (swimming.gen)
creatures available in the Framsticks distribution [15]. The values have been normalized ac-
cording to the maximum values of the properties among the creatures presented on a given
plot.
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the high value of inst speed leads to the high average error of the linear approximation of that
path.

The other three creatures: 2-legRammer, Frog#2 and RollingBlender#1, obtain very high
values of – respectively – var dis xy, var dis z and sd dis z xy. This can also be explained by
the specifics of their movement. 2-legRammer is composed of two “legs” connected with a
horizontal stick, which causes the creature to bounce left and right with each consecutive step.
Frog#2, while flat, performs a leaping motion which causes it to throw its front higher upwards
then its back while jumping, leading to a perceived elongation in the vertical dimension. The
body of RollingBlender#1 consists of four prongs, two on each side of the body, with the first
two attached orthogonally to the other two. The creature performs a rolling motion, which in
combination with its shape leads to a comparable dispersion in both xy-plane and z-dimension,
therefore leading to a high value of sd dis z xy.

Similar observations can be made for the swimming creatures. Sinefish is fast but does
not (at least in the initial stages of its simulation) follow a linear path, so both its inst speed
and err line xy are high. PrimitiveJellyfish shows strong outwards-inwards movement (like an
umbrella, opening and closing) which is reflected in the high value of var dis xy. Rowingyawl
balances its movement in xy-plane and z-dimension through a repeated rowing motion, therefore
it obtains a high value of sd dis z xy. The most intriguing value which can be observed in
Fig. 11(b) is however the high value of var dis z for Sinefish. Such a high value of that property
is intriguing, as the Sinefish creature is flat and does not show a lot of vertical movement. The
little vertical movement that it shows does, however, vary a lot in time when compared to the
average value of the dispersion of the Sinefish in the vertical dimension. This is confirmed by
an average value of sd dis z xy for that creature – even though Sinefish shows a high variation
of its vertical dispersion, that dispersion itself must still be relatively small when compared to
the horizontal dispersion of this creature.

3.5 Dissimilarity measure and its properties

The dissimilarity measure between agents a and b may be calculated as presented in (11). The
set of properties is defined as P , and thus ai and bi refer to the numerical evaluation of the
i-th property of agent a and b, respectively. Some properties may provide more information
about agent similarity, on the other hand some may provide none, therefore there is a need to
adjust the impact of each property on the final dissimilarity value. In the presented equation,
wi defines the weight of the i-th property.

d(a, b) =
∑
i∈P

wi|ai − bi| (11)

Each agents properties of movement may be evaluated without prior knowledge about other
agents in the pool. Such quantitative information is objective since it does not depend on the
context. Therefore it is easy to verify that the dissimilarity measure (11) is a metric. Assuming
that A is the set of agents, a measure may be considered a metric if and only if the following
statements are true for any i, j, k ∈ A:

(a) d(i, j) > 0

(b) d(i, j) = d(j, i)

(c) d(i, j) = 0⇔ i = j

(d) d(i, k) 6 d(i, j) + d(j, k)

Condition (a) is always fulfilled because of the absolute value in (11). The dissimilarity
value could become negative if some (or all) weights would be negative, yet since it is obvious
that these weights should always be positive (or at least non-negative), this will not happen.
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Statement (b) is true because the absolute value of a subtraction of the two values is the
same regardless of which value is the minuend and which is the subtrahend.

Condition (c) states that the dissimilarity value may be 0 if and only if the agent is compared
to an identical agent. Although (c) may not always be true because agents with different
morphologies and/or control systems may yield the same values of movement properties, we
can make this condition true by adding the following two restrictions:

a = b⇔ ∀i∈P ai = bi (12)

∀i∈P wi > 0 (13)

In (12) we assume that only the properties from the P set are used to differentiate agents
(“closed world assumption”), so agents with identical movement properties are considered in-
distinguishable. To ensure that the agents with distinguishable values of the properties from
P remain distinguishable, the restriction (13) forbids zero weights. Moreover, since in (13) we
assume all weights are positive and, in (11), the absolute value of the difference between the val-
ues of the properties is used, a dissimilarity value of 0 cannot be achieved by compensating the
deviation in value of one property with the deviation in value of another property. Therefore,
under these two restrictions, condition (c) is true.

The last condition (d) is fulfilled because the agent dissimilarity measure is a sum of one-
dimensional Euclidean distances and the Euclidean distance itself is a metric: if (d) is fulfilled
for every element of the sum, it will also be true for the total sum.

In conclusion, the proposed dissimilarity measure is a metric on the properties of movement
of the creatures. Under the additional assumption (12), we can also consider it to be a metric
on the creatures themselves.

3.6 Correlations between the properties of movement

The properties were proposed after performing a large set of observations on diversified types
of creatures. The output values describe creature movement patterns in a quantitative manner.
Yet it was hard to forecast what are the relations between themselves. A good method to
verify it is to test the correlation for each pair of properties. If some relations are observed,
additional actions may be taken, for instance a high value of correlation between two properties
may indicate that one of them is redundant and therefore can be ignored as it does not provide
any additional information.

Experiments were performed separately for three different species of creatures: fastlizard,
scorpion and star, with each species evolved in two different environments: land and water; six
unique populations were considered in total. This way, it was possible to investigate whether the
correlations between the values of properties observed in the population depend on the specific
creatures, or are they inherent to the properties themselves – although the size of the experiment
does not allow for any meaningful statistical reasoning, some of the more obvious trends may
be clear upon visual examination. For every population, each agent had its movement patterns
evaluated in a quantitative manner according to the equations presented earlier in this section.
The results were then arranged into eight vectors – each corresponding to one property of
movement. In the next step, the Pearson correlation coefficient was calculated for each pair of
vectors. The results are presented in the form of matrices in Fig. 12.

As expected, the highest values appear on the diagonal – they correspond to the correlation
between properties and themselves. For most of the pairs of properties, the absolute correlation
strengths are reasonably high, which suggests that the properties are not fully independent,
as they often synergize with each other (positive correlation) or require trade-offs (negative
correlation). However, in most cases these interdependencies do not appear to be inherent
to the properties, but rather an effect of applying specific morphologies (species) to different
environments. This observation is based on the fact that there are not many patterns that
repeat for matrices in Fig. 12.
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(a) Fastlizard (land).
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(b) Fastlizard (water).

err_li
ne_xy

var_dis_x
y

var_dis_z

sd_dis_z
_xy

inst_s
peedsfm f_m

ax

autocorr_m
ax

err_line_xy

var_dis_xy

var_dis_z

sd_dis_z_xy

inst_speed

sfm

f_max

autocorr_max

(c) Scorpion (land).
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(d) Scorpion (water).
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(e) Star (land).
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(f) Star (water).

Figure 12: Movement property correlation matrix for different populations.
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(a) Movement property correlation matrix for the
combination of six populations.
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(b) Variance of the movement property correlations
between six populations.
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(c) Movement property correlation matrix for the combination of six popula-
tions. This plot merges information from 13(a) and 13(b): transparency of
the boxes shown in (a) reflects the interpopulation variance of the correlations
shown in (b).

Figure 13: A summary of the property correlations for six populations (three different species:
fastlizard, scorpion, and star, both on land and in water).
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Fig. 13(a) presents the correlation matrix for the combined six aforementioned populations,
while Fig. 13(b) presents the matrix of variation between the values of the correlations in
these six populations. Low variation of the correlation values between different populations for
some pairs of the movement properties may suggest that these properties may be inherently
interdependent, in a way which does not depend on a specific morphology of the creatures (it
may however still depend on the general evolutionary task towards which the creatures were
evolved). The movement property correlation matrix with the box transparency scaled by the
interpopulation variance of the correlations can be seen in Fig. 13(c).

The lowest variations occur for the pairs: var dis xy – sd dis z xy, sd dis z xy – sfm, and
var dis xy – sfm. The first pair var dis xy – sd dis z xy shows relatively strong negative corre-
lation, which can be explained by the formulas (3) and (5) with which these two properties are
calculated: σ(Dxy) is a numerator of var dis xy, while simultaneously being a denominator of
sd dis z xy. The second pair sd dis z xy – sfm shows a positive correlation, which suggests that
creatures which dynamics are dominated by the movement in the xy-plane (lower sd dis z xy)
tend to perform more regular movement (low sfm) than the creatures which show more move-
ment in the vertical direction (e.g. by jumping). The last pair var dis xy – sfm shows relatively
weak negative correlation, low variance of which could be attributed to the low variance of the
two aforementioned pairs of properties.

For some pairs of the properties, the variance is especially high. An example of such a pair
of properties is err line xy – var dis xy which appears to always correlate positively for the land
populations, and negatively for the water populations. Although the number of the examined
populations is too low to draw meaningful conclusion, the fact that the value of the err line xy
– var dis xy correlation is always positive for the land populations and negative for the water
populations may suggest that the value of this correlation could be used to distinguish between
the populations evolved in different environments.

3.7 Estimating the importance of individual properties of movement

Calculating distance based on the raw values of the properties may not yield the expected
results as the scales on which these properties operate will not be the same across the whole
set of the properties. It is therefore advised for the values of each property to be standardized.
However, after the standardization the relative importance of each property will be equal when
calculating the dissimilarity of two creatures. This can be seen as advantageous, although in
practice, depending on the context, non-equal weights could also be seen as beneficial. An
example of such a situation would be a population where value of one of the properties stays
relatively constant – in this scenario the standardization of that property’s values could lead
to an unfair magnification of small, meaningless differences between creatures. In a perfect
scenario, the standardization of values of each property should be based on the set of all
possible creatures, which unfortunately is impossible. Below, one of the possible ways to assign
weights to each property is presented.

In order to calculate the weights of the properties based on their “differentiating power”,
we determine the coefficient of variation over the set of average property values for different
agent populations. Let us define C as the set of populations (classes), while P is the set of
properties. The average property value matrix Mavg may be calculated in the following way:

∀i=1..|P |∀j=1..|C|Mavg[i][j] = ci : ci ∈ C[j] (14)

After the matrix is calculated, the coefficient of variation is determined for each column to
estimate the diversity of the values of each property across all examined populations. The
values of the coefficient of variation are then normalized (which causes the least important
property to be assigned zero weight) and then rescaled to sum up to one. The visualization of
the matrix and the coefficients of variation can be seen in Fig. 14. A high diversity value (top
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Figure 14: Matrix of the average values of properties in each population. The first row repre-
sents normalized values of the coefficient of variation for the properties (i.e., how strongly do
the values vary relative to their mean).

Property Pop. std. dev. Norm. pop. std. dev. Weight

err line xy 0.813 0.820 0.254
var dis xy 0.302 0.040 0.012
var dis z 0.775 0.763 0.237
sd dis z xy 0.465 0.289 0.089
inst speed 0.930 1.000 0.310
sfm 0.377 0.155 0.048
f max 0.379 0.158 0.049
autocorr max 0.276 0.000 0.000

Table 1: Movement property diversity and proposed weights.

row) indicates that the related property (column) should receive a high weight. Low diversity
value indicate that the values of the property tends to be similar for different populations.

Table 1 presents the weights that were calculated for the set of creatures taken from six
populations: Fastlizard, Scorpion, and Star, each of those in both water and land variants. The
weights are clearly diversified, with the mean speed in xyz having the biggest impact on the
dissimilarity measure with the weight of 31%; considering that there are 8 properties this is
a very high value. Other important properties are err line xy (25.4%) and var dis z (23.7%).
The maximum value of the autocorrelation autocorr max has received a weight of 0%, which
effectively excludes it from the set of the considered properties.
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The proposed method of selecting weights of the properties is not optimal in the sense of
maximization of the cohesion and separation of the clusters of creatures from different pop-
ulations. The only effect the weighting of the properties has in the space of the original di-
mensionality is stretching of the dimensions. Weighting of the properties can however affect
the low-dimensional projections of the full set of creatures by changing the relative distances
between creatures. Therefore, the proposed method allows one to amplify the component of the
variability present in the data – the component that distinguishes different populations. This
method preserves the variability present within each population, but to a lesser degree than it
would be the case if the weights of all properties were kept equal.

4 Properties of movement in specific evolutionary experiments

Going a step farther from the comparing the average values of the properties for different
populations, a visualization of the distribution of creatures of different types in the space of the
proposed properties could allow for evaluating the validity of the proposed set of properties.
Should the proposed properties allow for distinguishing between different populations, this
would suggest that the proposed set of the properties is sufficient. Unfortunately, due to the
high number of the properties, the populations of creatures cannot be visualized directly in
their original dimensionality.

To allow the visual comparison between different populations, we use the multidimensional
scaling (MDS) to reduce the number of dimensions to three and two. In order to perform
MDS, the matrix of distances between all creatures is first calculated. Then, the algorithm
calculates the new coordinates for all the creatures in the new, low-dimensional space, while
simultaneously preserving the original distances between them to the highest possible degree.

In the experiments below we compare the results obtained for two different weight profiles.
In the first approach the weights all of properties are set to be equal, while in the second
approach these weights are calculated specifically for the considered set of creatures following
the procedure described in Sect. 3.7. The mean silhouette values [25] are also computed (in
the original space of all properties) in order to quantitatively evaluate whether the proposed
method of setting weights is beneficial. The mean silhouette describes the degree to which the
observations (i.e., creatures) are located near the center of mass of their respective clusters (i.e.,
populations) and, simultaneously, away from other clusters. The silhouette measure calculated
for a single creature takes the values in the range [−1, 1], where −1 indicates that the creature is
more similar to creatures from other populations than to its own respective population, while
the value of 1 indicates that the creature is a perfect representative of its own population.
Therefore, the mean silhouette value reflects how easy it is to distinguish the populations from
each other.

Additional experiments where the movement properties introduced in this work are applied
for the analysis of populations of evolved agents are described in [11].

4.1 Estimating similarity between agents with common body morphology

In this experiment agents were aggregated into test populations so that each test population
contained only agents with a similar body morphology. There were three test populations, each
corresponding to one type of body morphology:

(a) Fastlizard population – aggregates Fastlizard (land) and Fastlizard (water).

(b) Scorpion population – aggregates Scorpion (land) and Scorpion (water).

(c) Star population – aggregates Star (land) and Star (water).
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(c) Equal weights, 3D space (53.1% of the total vari-
ance preserved).
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(d) Equal weights, 2D space (44.7% of the total vari-
ance preserved).

Figure 15: Low-dimensional MDS projections of the dissimilarity matrix of the Fastlizard
creatures evolved in two different environments (on land or in water).

The body morphology was fixed within each of these populations, with the varying brain
structures (where brain is understood as the neural network controlling the behavior of the
creature) being a result of an evolutionary adaptation to the given environment.

The comparison of the Fastlizard (land) and Fastlizard (water) creatures can be seen in
Fig. 15. Both populations are clearly separated, with only one creature placed in the space
between two, distinct clusters. Although both the specific weights and the equal weights provide
a clear cut division between two populations, in the case of specific weights the creatures are
clustered more tightly, with mean silhouette being 0.6 for specific weights and 0.37 for equal
weights. This suggests that using the weights tailored towards the considered populations can
help with differentiating between creatures evolved in different environments.

The comparison of the Scorpion (land) and Scorpion (water) creatures can be seen in Fig. 16.
Just as in the case of the Fastlizard, both land and water creatures are separated by a wide
margin. This observation is in agreement with the high values of the mean silhouette (0.77 for
the specific weights, and 0.61 for the equal weights).

The comparison of the Star (land) and Star (water) creatures can be seen in Fig. 17. For
these populations an important distinction can be made between the two-dimensional projec-
tions obtained for the specific and the equal weights: while the specific weights allow for a
relatively clear distinction to be made between the parts of the space linked to specific environ-
ments, the use of the equal weights makes such a distinction impossible, as the two populations
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(b) Specific weights, 2D space (83.3% of the total vari-
ance preserved).
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Figure 16: Low-dimensional MDS projections of the dissimilarity matrix of the Scorpion crea-
tures evolved in two different environments (on land or in water).

overlap. The poor separation of the populations is confirmed by the low values of the mean
silhouette, which are 0.25 for the specific weights, and only 0.13 for the equal weights. This
suggests that for this type of creatures the properties of the movement do not strongly depend
on the environment in which the creatures were evolved.

All the projections shown in Figs. 15, 16 and 17 preserve at least 45% of the variance present
in the original space of eight dimensions, with some of them exceeding 80% of the preserved
variation. Just as expected, the 3D projections preserve more of the variance than the 2D
projections. More interesting is the fact that using the weights specific for the given populations
results in a higher fraction of the variance being preserved then it is for the equal weights. Then
reason for that, is that although using the specific weights means that the variance of the already
diversified properties is increased, the number of the high-variance properties is usually low, and
so most of their variance can be included in the low-dimensional projections. Simultaneously
the importance of the low-variance properties is accordingly decreased, and so the variance lost
by not including them in the final projections is relatively smaller.
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Figure 17: Low-dimensional MDS projections of the dissimilarity matrix of the Star creatures
evolved in two different environments (on land or in water).
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(c) Equal weights, 3D space (59.9% of the total vari-
ance preserved).
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Figure 18: Land creatures dissimilarity matrices projected using MDS to low-dimensional
spaces.

4.2 Estimating similarity between agents with reference to the test environ-
ment

This experiment is analogous to the previous one, however instead of comparing the creatures
with similar morphologies in different environments, the creatures with different morphologies
evolved in the same environments are being compared.

First, three types of land creatures are being compared (Fig. 18). The three populations
create three distinct clusters, with mean silhouette being 0.42 for the specific weights, and 0.37
for the equal weights. However, these clusters cannot be separated linearly quite as easily in
the low-dimensional projections as it was the case for the water vs. land comparisons. This is
true especially for the 2D projections, where Star creatures form a ring around a tight cluster
of Scorpion creatures (nonetheless, these two populations do not appear to overlap).

The results of the comparison between different types of creatures evolved in the water
environment are presented in Fig. 19. The water creatures show a high variance which cannot
be effectively captured by the low-dimensional projections – for the equal weights, the 2D
projection captures only 37% of the variance present in the original space. This is a very low
value, as even in the worst case scenario 25% of the variance would still be preserved. Although
Fastlizard and Scorpion populations can be distinguished quite easily, the Star population –
which shows the highest diversity among the considered populations – overlaps with the other
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Figure 19: Water creatures dissimilarity matrices projected using MDS to low-dimensional
spaces.

two, especially with the Fastlizard population. This overlap of populations can also be seen in
the low values of the mean silhouette, which are 0.3 for the specific weights, and 0.22 for the
equal weights.

4.3 Estimating similarity between agents from many independent evolution-
ary runs

Due to the successful application of the customized weights in the previous section, only the
population-specific weights of the properties are used in this section.

A multidimensional scaling of a big set of 10,000 creatures taken from 100 evolutionary runs
(100 selected creatures each) was performed. Each of the selected creatures was chosen as the
most fit creature among 1000 consecutively evaluated creatures in a given evolutionary run,
with each evolutionary run evaluating 100,000 creatures in total. In all 100 evolutionary runs
the creatures were evolved towards the goal of high speed, calculated as the distance covered by
a creature over its lifespan divided by the length of its lifespan. The results of MDS are shown
in Fig. 20. Less than a half of the creature variability has been covered by the low dimensional
projections of the creature dissimilarity, which suggests that the evolution has explored a wide
range of different behaviors. However, even with such a low amount of the preserved variability,
some interesting structures can be observed in the data. The arrangement of the creatures in
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(c) 2D projection of the creature dissimilarity with the trajectories of the evolutionary runs
traced with black lines. The dots represent only the final creatures from each evolutionary
run.

Figure 20: The dissimilarity of the creatures from one hundred independent evolutionary runs
(100 creatures each, 10,000 in total). The color of each dot represents the fitness value of its
corresponding creature (i.e., the mean speed over its lifespan), with blue representing the lowest
and red representing the highest value.
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2D space resembles an outburst with three spikes protruding symmetrically on each side, facing
away from a long, curved tail. These spikes may be composed of creatures following similar
evolutionary paths, with each spike representing one path noticeably different from the others.
The spikes facing downwards contain the fastest creatures, with the speed of the creatures
growing towards the ends of the spikes: a gradient of the sought property (i.e., the high speed)
can be observed in the space of the creature properties. This means that the proposed set of the
properties could be used in the novelty search-based optimization of the creatures. However,
one of the spikes facing upwards also contains fast creatures, suggesting that there is more than
just one combination of the property values that yields fit creatures. Therefore the optimization
problem of finding creatures with the highest speed is still multimodal in the space of movement
properties.

As the gradients observed in Fig. 20 may result from a correlation between the speed of a
creature, as measured over its whole life, and the mean instantaneous speed of that creature,
the experiment has been repeated with inst speed removed from the set of the properties. The
results of this experiment are shown in Fig. 21. It appears, however, that the inst speed was
not responsible for the observed gradients, as they still can be seen even with that property
ignored.

Another experiment explored a similar set of creatures taken from 10 independent evolution-
ary runs, 2000 selected creatures each. In order to reduce the computational load, the size of
each evolutionary run sequence was reduced to 667 virtual creatures, with the properties of the
virtual creatures being set as the median values of three consecutive creatures from the original
sequence. The results of MDS are shown in Fig. 22. Similarly to the previous experiment, a
general, imperfect gradient of the fitness values can be seen in the projections, with the speed
of the creatures increasing from the right to the left side of the plots. In fact, even the cluster
of fast creatures visible in the upper right corner of the plots comes from the evolutionary run
that, eventually, ends up in the upper left corner of the plots.

Some interesting observations can be made based on the shape of the trajectories taken by
the separate evolutionary runs, as shown in Fig. 22(c). Although sometimes in the initial phase
of the evolution the search process visits the unfit parts of the property space (e.g., the dark
green trajectory), it eventually tends to end up in the more fit part of the property space on the
left side of the plot. The exception from this rule is the black trajectory that appears to explore
the parts of the property space that were not covered by any of the other evolutionary runs. It
can also be observed that most of the trajectories end up in hard to escape local optima, with
values of only some of the properties changing over time – this effect appears on the plots in
the form of elongated clouds of uniform colors.

Just as before, additional experiments were performed with reduced sets of the properties in
order to filter out the effects of those properties that were expected to most strongly correlate
with the fitness values of the considered creatures. This time we have considered both excluding
just inst speed, and excluding inst speed and err line xy. The results of these experiments
are presented respectively in Figs. 23 and 24. The rationale behind excluding the err line xy
property has been described in detail in Sect. 3.3. Although removing these properties from
the set of the properties leads to some degree of an overlap between the creatures of different
fitness levels, the gradient observed when the full set of the properties was used can still be
seen. This means that no single property is responsible for the presence of that gradient in the
projected data. It is worth noting however, that after excluding both inst speed and err line xy
from the set of considered properties, almost all of the final observations are clustered along
one, elongated patch of the property space.
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(a) 3D projection of the creature dissimilarity (58.2%
of the total variance preserved).
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(c) 2D projection of the creature dissimilarity with the trajectories of the evolutionary runs
traced with black lines. The dots represent only the final creatures from each evolutionary
run.

Figure 21: The dissimilarity of the creatures from one hundred independent evolutionary runs
(100 creatures each, 10,000 in total). The color of each dot represents the fitness value of
its corresponding creature (i.e., the mean speed over its lifespan), with blue representing the
lowest and red representing the highest value. inst speed has been excluded from the set of
the considered properties in order to remove the expected influence of its correlation with the
fitness values of the creatures.

30



0.3
0.2

0.1
0.0

0.1
0.2 0.3

0.2
0.1

0.0
0.1

0.05

0.00

0.05

0.10

0.15

(a) 3D projection of the creature dissimilarity (72% of
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(c) 2D projection of the creature dissimilarity with the trajectories of the evolutionary runs
traced with lines (each color corresponds to one run). The crosses represent the starting
points, and the dots represent the ending points of each evolutionary run.

Figure 22: The dissimilarity of the creatures from ten independent evolutionary runs (1000
creatures each, 10,000 in total). In Figs. 22(a) and 22(b), the color of each dot represents the
fitness value of its corresponding creature (i.e., the mean speed over its lifespan), with blue
representing the lowest and red representing the highest value.
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(a) 3D projection of the creature dissimilarity (68.8%
of the total variance preserved).

0.2 0.1 0.0 0.1 0.2

0.3

0.2

0.1

0.0

0.1

(b) 2D projection of the creature dissimilarity (63.7%
of the total variance preserved).

0.2 0.1 0.0 0.1

0.3

0.2

0.1

0.0

0.1

(c) 2D projection of the creature dissimilarity with the trajectories of the evolutionary runs
traced with lines (each color corresponds to one run). The crosses represent the starting
points, and the dots represent the ending points of each evolutionary run.

Figure 23: The dissimilarity of the creatures from ten independent evolutionary runs (1000
creatures each, 10,000 in total). In Figs. 23(a) and 23(b), the color of each dot represents the
fitness value of its corresponding creature (i.e., the mean speed over its lifespan), with blue
representing the lowest and red representing the highest value. inst speed has been excluded
from the set of the considered properties in order to remove the expected influence of its
correlation with the fitness values of the creatures.
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(c) 2D projection of the creature dissimilarity with the trajectories of the evolutionary runs
traced with lines (each color corresponds to one run). The crosses represent the starting
points, and the dots represent the ending points of each evolutionary run.

Figure 24: The dissimilarity of the creatures from ten independent evolutionary runs (1000
creatures each, 10,000 in total). In Figs. 24(a) and 24(b), the color of each dot represents
the fitness value of its corresponding creature (i.e., the mean speed over its lifespan), with
blue representing the lowest and red representing the highest value. inst speed and err line xy
have been excluded from the set of the considered properties in order to remove the expected
influence of their correlation with the fitness values of the creatures.
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5 Summary and further work

This report introduced a number of basic properties of movement that can be easily estimated
for real or simulated creatures, or robots consisting of moving parts consistent with the model
described in Sect. 2. In Sect. 3 we focused on technical description of each property that
captures a single aspect of movement, as well as on demonstrating and verifying their charac-
teristics. Sect. 4 analyzed a few populations of evolved creatures using properties of movement,
demonstrating that different environments or conditions under which the creatures are evolved
can be captured by the introduced properties of movement. A more comprehensive analysis of
a larger set of evolved creatures is available [11].

In order to verify the characteristics of each properties of movement introduced in this
work, more experiments would be useful. Such experiments include the analysis of creatures
evolved in different conditions (gravity, slipperiness, water depth), assigning human labels to
clusters of movement methods discovered by the movement properties, automatically identi-
fying representative agents for each cluster [6], discovering weights or aggregation methods of
movement properties (possibly with machine learning models) that reflect human classification
of movement strategies, and investigating and visualizing how average and individual movement
strategies change during evolution. Additional properties that would expand the proposed set
of the properties could also be considered, including the properties based on the mean speed of
a creature as a function of a length of the time window in which that speed is being calculated.
Scalability of all the properties (i.e., invariance of the values of properties to varying resolution
of sampling of the points on the body of a creature) should be examined, and the properties
that lack this quality should be improved.

References

[1] A. D. Aczel. Complete Business Statistics. Tata McGraw-Hill, 2006.

[2] David R. Brillinger. Time Series: Data Analysis and Theory. SIAM, 2001.
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