
Parallel computing in Framsticks

Maciej Komosinski Szymon Ulatowski

Technical Report RA–18/2013

Institute of Computing Science
Poznan University of Technology

December 2013

Abstract

This report demonstrates how parallel computation can be implemented in the Fram-
sticks environment. A number of possible multithreaded and distributed architectures and
configurations is shown. The main part of this report discusses and explains two experiment
definitions (prime-mt and standard-mt) that exploit multithreading. These experiment def-
initions are included in the official Framsticks distribution. The first one serves as a minimal
example of how parallelization can be implemented in Framsticks. The second one is more
complex: it shows how to deal with Slave experiments that do not have an internal stop con-
dition, how to migrate the evolved genotypes between Slaves, and how to use Slave checkpoint
events to monitor the progress of evolution.

Contents

1 Introduction 2
1.1 Multithreaded and distributed architectures in Framsticks 2

2 Two experiment definitions: prime-mt and standard-mt 4
2.1 prime-mt experiment definition . 6
2.2 standard-mt experiment definition . 8

3 Summary 13

1

1 Introduction

The Framsticks simulator [25], since its initial releases in 1996, has been used as a computing
engine in a number of diverse applications [24], some of which are mentioned below:

• comparison of genetic encodings in artificial life and evolutionary design [21, 23, 8],

• estimating symmetry of evolved and designed agents [6],

• employing similarity measure to organize evolved constructs [10, 9, 20, 11],

• bio-inspired visual-motor coordination [7] and real-time coordination [19],

• optimization of fuzzy controllers that can be understood by a human [4],

• modeling of plastic neural nets and their evolution [5],

• modeling robots [33, 29],

• user-driven (interactive, aesthetic) evolution [24, 6],

• synthetic neuroethology [27, 28],

• analyses of brain activity evoked by perception of novel biological motion [30, 31],

• evaluation of logical abductive hypotheses [16, 15] and solving abductive problems [3],

• modeling perception of time in humans [12, 13, 14],

• modeling foraminiferal genetics, morphology, simulation, and evolution [17, 18],

• modeling communication, emergence, flocking, evolution of restraint, predator–prey coevo-
lution, semiosis, speciation, and other biological phenomena [24, 1, 2].

Many of these applications require considerable amounts of computing power, and it is often
the case that the more the computing resources are available, the more meaningful the experi-
ments and their results are. With modern computers equipped with many processors and cores
and a clear direction of hardware development in the near future, using multithreading in the
Framsticks processing engine allows to exploit more computing power on a single machine in a
single experiment [26]. These are the major motivations for introducing multithreading support
in Framsticks.

Other options that allow one to exploit multi-core machines and distributed machine clus-
ters without using multithreading include running independent, separate experiments in parallel
(which lets one gather a number of independent results), and using Framsticks server [22] to
both parallelize experiments on one machine and distribute experiments among different ma-
chines [32].

1.1 Multithreaded and distributed architectures in Framsticks

Many aspects of the Framsticks environment can be extended by editing scripts responsible for
certain tasks. This is usually done by Framsticks developers and advanced users, while normal
users can use these scripts without learning about Framsticks technical details. One of the
most important types of scripts is Experiment Definition (short: expdef), each one describing a

2

Master

Slave 0 Slave 1 Slave 2 Slave 3 Slave 4

Figure 1: Basic multithreading architecture.

class of experiments, defining its input (including the user-adjustable parameters), output, and
processing rules.

In order to benefit from parallelization, the Experiment Definition script has to handle mul-
tithreading explicitly, which means it is responsible for assigning work to individual threads and
integrating the results. Each Slave thread runs its own expdef script inside its own Simulator
object, independent from the Master thread’s Simulator, as illustrated in Fig. 1. The single-
threaded script can often be used as a building block when creating the multithreaded version
of the experiment.

The Master can create, delete and control Slaves by calling any method of the Slave’s Sim-
ulator object. Most of the Slave’s functions and fields can only be accessed by the Master
while the Slave is not running. The exceptions are: Simulator.start(), Simulator.stop(),
Simulator.running, and Simulator.simspeed.

In addition to the usual expdef events, the Master script receives two additional slave-related
events:

• onSlaveStop(): called when any of the Slave Simulators stops. A Slave can stop by itself
or can be stopped by the Master.

• onSlaveCheckpoint(): called when a Slave announces a checkpoint. Checkpoints allow
for asynchronous Slave-to-Master notifications and can pass any data as an argument.

All slave-triggered events are asynchronous and subject to delays.
Slaves are not aware of the Master’s existence – they work just like single-threaded standalone

Simulators. While this architecture allows the Master to control Slaves on a low level, it may be
beneficial to restrict the Master-Slave interaction to a few well-defined high level operations:

• Load experiment state,

• Save experiment state,

• Start simulation,

• Stop simulation.

This way, the Slave tasks become self-contained (one sends a complete experiment state
each time) which helps avoid unexpected behaviors. Using only Load/Save for data exchange
promotes encapsulation, because these operations are handled by the Slave script which can
enforce internal consistency. Manipulating “live” Slave objects by the Master thread may be
thought of as an equivalent of accessing private members in some programming languages – it
is useful for simple tasks and debugging, but it is easy to create a Master script that makes the
correctly written Slave script to fail.

3

Server 1 Server 2 Server 3

Network Coordinator

Simulator Simulator Simulator

Figure 2: Running the multithreaded experiment using network servers instead of Slave threads.

If possible, keeping the experiment state file format interchangeable between Master and
Slaves is recommended. This way experiment data can be loaded into a multithreaded or a
single-threaded environment.

The basic multithreaded experiment may be implemented as follows:

1. Make sure the Slave (single-threaded) experiment supports Load and Save operations.

2. Create a new experiment definition by appending -mt suffix to the single-threaded exper-
iment name.

3. Implement function onStart(): divide the task into subtasks, send them to Slaves using
Simulator.slaves[...].load or import, and start the Slave Simulators (Simulator.slaves.startAll()).

4. If the Slave experiment has no stop condition, your Master will be responsible for calling
Simulator.slaves.stopAll() or Simulator.slaves[...].stop() at some point dur-
ing the experiment. Slave checkpoint events can be used to react to Slave progress, as
demonstrated in the standard-mt.expdef described below.

5. Implement function onSlaveStop(): retrieve slave data using StopEvent.slave.save()

and integrate with the current Master state.

6. Implement function onStep(): Typically, the Master does not perform any continu-
ous work and only reacts to events, yet its onStep() function is executed periodically
once the experiment is started, because the Master is still a normal Framsticks Simu-
lator. To avoid wasting CPU power and hampering performance of Slave threads, call
Simulator.sleep(...), which causes the Master thread to enter the sleep state for a
number of milliseconds and to stop using the processor.

Once the multithreaded experiment is designed and implemented, it may become a dis-
tributed experiment by running Slave Simulators on multiple Framsticks Servers (Fig. 2), as the
basic Slave Simulator and Framsticks Server capabilities are essentially identical. This requires
a Network Coordinator, which is an external client application that uses the Framsticks server
protocol [22] and manages remote servers – an example is Framsticks Java Framework [32].

Given the common interface, each or some of the Servers could run the multithreaded version
of the experiment or could be replaced by another Network Coordinator, increasing the paral-
lelization even further (Fig. 3). In this case, the same multithreaded script is used in all Network
Coordinator and Master nodes.

2 Two experiment definitions: prime-mt and standard-mt

This section discusses two experiment definitions that exploit multithreading and are included
in the official Framsticks distribution.

4

Server 1 Server 2 Server 3

Server 4 Server 5 Server 6

Network Coordinator

Simulator Master Network Coordinator

Slave 1 Slave 2 Slave 3 Simulator Simulator Master

Slave 1 Slave 2 Slave 3

Figure 3: Using multithreaded servers in a distributed experiment.

The first one, prime-mt, is the basic functional example of the Framsticks multithreaded
experiment, demonstrating how the Master thread creates and controls its Slave threads. Fol-
lowing the usual convention, prime-mt’s single-threaded counterpart is prime, the experiment
that finds the list of prime numbers in a given range. By the nature of the problem, there is
always a solution, so the prime experiment always stops itself when the solution is ready and
prime-mt relies on this behavior.

The other multithreaded experiment, standard-mt, apart from being an useful extension
of the most common Framsticks evolutionary optimization experiment standard, shows how
to deal with Slave experiments that do not have an internal stop condition. standard-mt’s
Master manages the parallelization by periodically stopping the Slaves and migrating the evolved
genotypes between them. Slaves’ checkpoint events are used for monitoring the progress of
evolution.

All multithreaded experiments are recommended to include two script pieces that facilitate
thread-awareness. The first piece is a property that allows users to adjust the number of threads
used by the experiment:

standard props threads.inc

use s tandard threads . inc to c a l c u l a t e the e f f e c t i v e number o f threads .

property :
id : threads
type : d
name :Number o f threads
group : P a r a l l e l i z e d
help : ˜
Use t h i s s e t t i n g to s e t the number o f threads :
− p o s i t i v e va lue s (1 , 2 , 3 , . . .) are i n t e r p r e t ed l i t e r a l l y as the number o f threads ,
− zero (0) means the number o f threads equal to the number o f CPU cores ,
− negat ive va lue s (−1 ,−2 ,−3 , . . .) mean the number o f CPU cor e s l e s s 1 , 2 , 3 , . . .
˜

The second piece one should include when writing their own multithreaded experiment defi-
nition is a little function that computes the effective number of threads:

standard threads.inc

// Ca lcu la te the e f f e c t i v e user−s e l e c t e d number o f threads
// (a l s o handles t r i c k s with zero and negat ive va lue s) .
// Inc lude s tandard props threads . inc to c r e a t e the ExpPropert ies . threads f i e l d .

5

function getExpPropert iesThreads ()
{

i f (ExpPropert ies . threads > 0)
return ExpPropert ies . threads ;

return Math .max(1 , S imulator . cpus + ExpPropert ies . threads) ;
}

2.1 prime-mt experiment definition

Let us start with an illustrative experiment definition that uses an extremely simple case of a
computationally-intensive task: finding prime numbers. The core function below is used as an
example of a computationally costly procedure:

Listing 1: A simple computationally-intensive function used in prime.expdef

function testPr ime (N) // extremely i n e f f i c i e n t , j u s t f o r i l l u s t r a t i o n
{

for (var i = 2 ; i < N; i++)
i f ((N / i)∗ i == N) return 0 ;

return 1 ;
}

prime.expdef and prime-mt.expdef introduce the same three domain-specific experiment
parameters and a state: ExpProperties.from number, ExpProperties.to number, ExpState.current number,
and ExpState.result. By convention, parameters (ExpProperties) mean something constant
that is defined before starting the experiment, while the state (ExpState) is variable.

prime.expdef was meant to mimic a regular Framsticks experiment, where simulation steps
reflect passing simulation time, so instead of just looping through the input range in one step, it
tests primality of only one value per step. As a side effect of this approach, such an experiment
can be easily interrupted, and the current computation state can be saved in the experiment state
file. The onStep() function is listed below; note the stop condition – calling Simulator.stop().

Listing 2: The single step of prime.expdef

function onStep ()
{

i f (ExpState . current number > ExpPropert ies . to number)
{

Simulator . stop () ;
return ;

} else
{

i f (testPr ime (ExpState . current number))
{

ExpState . r e s u l t . add (ExpState . current number) ;

// Optional data a s s o c i a t ed with a checkpo int :
// Simulator . checkpointData (ExpState . current number) ;

}
ExpState . current number++;

}
}

6

prime-mt.expdef is slightly more complex. It starts by setting up its Slave Simulators
(Simulator.slaves.size=...) and sending the initial chunk of work (that is, a subrange of
the whole input range).

Listing 3: Starting prime-mt.expdef

function onStart ()
{

Simulator . s l a v e s . s topAl l () ;
S imulator . s l a v e s . s i z e = getExpPropert iesThreads () ;
S imulator . p r i n t (”Using ” + Simulator . s l a v e s . s i z e + ” threads ”) ;
g schedu led = 0 ;
for (var i = 0 ; i < Simulator . s l a v e s . s i z e ; i++)
{

scheduleChunkOfWork (Simulator . s l a v e s [i]) ;
}

}

Our scheduleChunkOfWork() function works by accessing the Slave Simulator object directly
and setting its experiment parameters and state variables. A chunk of work is simply the next
range of numbers (of the length defined by ExpProperties.chunk), after the last scheduled one.
Then, a Slave Simulator is started. The g scheduled variable keeps the current number of the
“work in progress” slaves.

Listing 4: Scheduling a single piece of work to a Slave Simulator in prime-mt.expdef

function scheduleChunkOfWork (s l av e)
{

i f (ExpState . current number <= ExpPropert ies . to number)
{

i f (s l a v e . running)
{

Simulator . p r i n t (” Slave s imula to r s t i l l running in scheduleChunkOfWork () ; ! ”) ;
return ; // or stop () and cont inue schedul ing , but something went wrong

}
s l a v e . expdef = ”prime” ;
s l a v e . expprope r t i e s . from number = ExpState . current number ;
s l a v e . expprope r t i e s . to number = Math . min (ExpState . current number +

ExpPropert ies . chunk − 1 , ExpPropert ies . to number) ;
s l a v e . i n i t () ;
ExpState . current number = s l av e . expprope r t i e s . to number + 1 ;
s l av e . s t a r t () ;
g schedu led++;

}
}

prime.expdef stops automatically after finishing its work and this automatically sends the
onSlaveStop() event, where our prime-mt.expdef receives the partial result and schedules the
next chunk (unless the whole task is already completed).

In scheduleChunkOfWork() function, we again access the Slave Simulator variables directly
(through the StopEvent object).

The last part shows the purpose of the g scheduled variable – it tells if we are still waiting
for some more Slaves. It is important to note that checking the current running state of Slaves
(instead of g scheduled) would be incorrect here, because slave.running==0 is also possible
after some slave finished the work, but its onSlaveStop event was not yet processed. The
difference is that slave.running only checks the slave part of the transaction, while g scheduled

knows if the Master script has finished processing the Slave’s return data.

7

Listing 5: Actions performed by prime-mt.expdef after the chunk of work is completed

function onSlaveStop ()
{

g scheduled−−;
// Simulator . p r i n t (” s l av e #”+StopEvent . index+” stopped ”) ;

// For many experiments , sav ing the experiment s t a t e could be a more appropr ia t e
// way f o r r e t r i e v i n g the r e s u l t :
// var s=StopEvent . s l a v e . save (nu l l) ; // nu l l=save to s t r i n g in s t ead o f named f i l e
// Simulator . p r i n t (” saved by #”+StopEvent . index+” :”+ s) ;

// But here , we ac c e s s the ExpState . r e s u l t f i e l d d i r e c t l y :
var r e s = StopEvent . s l a v e . exps ta te . r e s u l t ;
// Simulator . p r i n t (” s l av e #”+StopEvent . index+” r e s u l t :”+ r e s) ;
ExpState . packet counter++;
for (var i = 0 ; i < r e s . s i z e ; i++)

ExpState . r e s u l t . add (r e s [i]) ;

i f (Simulator . running)
{

scheduleChunkOfWork (StopEvent . s l a v e) ;

// I t may be tempting to use Simulator . s l a v e s . running to see i f the computation
// i s s t i l l advancing , but the r i g h t way i s g schedu led :
// g schedu led==0 means that the re i s no scheduled work because we are done .
// Simulator . s l a v e s . running==0 could mean the same , but i t could a l s o be 0
// because a l l the s imu la t i on s have f i n i s h e d t h e i r cur rent jobs and are wai t ing
// f o r the next ass ignments .

i f (g schedu led == 0)
Simulator . stop () ;

}
}

2.2 standard-mt experiment definition

Like in the previous example, standard-mt.expdef splits the work among a number of Slave Sim-
ulators that run the single-threaded version of the experiment – in this case, standard.expdef.

Compared to prime-mt.expdef, the script demonstrates two new techniques:

• using file import/export for transferring bigger amounts of data between Simulators,

• using checkpoint events for monitoring the Slave Simulator progress.

Here is how onStart() transfers the Master Simulator settings into the Slave: exporting to
null filename returns the file contents as a string instead of writing to the actual file, and the
exported data is imported by passing the entire contents preceded by a “string://” pseudo-URL
as the filename argument in the import() function.

Listing 6: Starting the multithreaded standard-mt experiment

function onStart ()
{

SHOULD STOP = 0 ;
Simulator . s l a v e s . s topAl l () ;
S imulator . s l a v e s . cance lA l lEvent s () ;
S imulator . s l a v e s . s i z e = getExpPropert iesThreads () ;

8

var e xpo r t e d s e t t i n g s = Simulator . export (null , 4 + 16 + 32 , −1, −1);
// −1 means export a l l groups
// Simulator . p r i n t (” exported=”+expo r t e d s e t t i n g s) ;

for (var i = 0 ; i < Simulator . s l a v e s . s i z e ; i++)
{

var s = Simulator . s l a v e s [i] ;
s . expdef = ” standard ” ;
s . import (” s t r i n g :// ” + expo r t ed s e t t i ng s , 4 + 8 + 16) ;

}

sendToSlaves () ;
GenePools [0] . mergeInstances () ;
S imulator . s l a v e s . s t a r tA l l () ;

}

The same method is used for transferring genotypes between Simulators except that for the
Master-to-Slave export, the string is created by individually saving Genotype objects to File.

Listing 7: Saving the selected genotypes to a string

function exportSe lectedGenotypes (s e l e c t i o n)
{

var f = F i l e .new () ; // F i l e . new () c r e a t e s a new memory f i l e ,
// i t s content i s then returned as a text s t r i n g upon c l o s i n g

for (var i = 0 ; i < s e l e c t i o n . s i z e ; i++)
f . writeNameObject (” org ” , GenePools [0] [s e l e c t i o n [i]]) ;

return f . c l o s e () ;
}

Then, we use the already known ”string://” URL to import the string into a different Sim-
ulator:

Listing 8: Key operations of the sendToSlaves() function in standard-mt.expdef

function sendToSlaves ()
{

. . .
GenePools [0] . s p l i t I n s t a n c e s () ;
var mixed = [] ; //mixed [i] = genotypes exported f o r s l av e #i
. . .

var a = randomAllocation (GenePools [0] . s i z e , S imulator . s l a v e s . s i z e) ;
. . .
var a=randomAllocation (GenePools [0] . s i z e , S imulator . s l a v e s . s i z e) ;
for (var i = 0 ; i < a . s i z e ; i++)

mixed [i] = exportSe lectedGenotypes (a [i]) ;
. . .
for (var i = 0 ; i < Simulator . s l a v e s . s i z e ; i++)
{

var s = Simulator . s l a v e s [i] ;
s . genepoo l s [0] . c l e a r () ;
s . import (” s t r i n g :// ” + mixed [i] , 2 + 128) ; // import in to s l av e
Simulator . p r i n t (” s l a v e #” + i + ” has ” + s . genepoo l s [0] . s i z e + ” genotypes ”) ;
s . genepoo l s [0] . mergeInstances () ;
. . .

}

9

. . .
}

Note that sendToSlaves() calls two rarely used functions: splitInstances() before prepar-
ing the tasks for Slaves and mergeInstances() after each Slave has imported its file. This is be-
cause assigning work to Slaves works on a Genotype level, which in standard.expdef can repre-
sent a number of identical genotypes (Genotype.instances field). GenePool.splitInstances()
turns all multiple-instance Genotypes into single-instance Genotypes by cloning, and GenePool.mergeInstances()

restores the normal state where one genotype can have many instances.
Unlike prime.expdef, the standard Framsticks experiment does not stop itself. standard-mt.expdef

uses checkpoint events to watch the progress of its Slave Simulators and stops the Slaves after
the desired number of evaluations. The Master Simulator is able to do it because its Slave script
standard.expdef sends the checkpoint event each time the next creature has been evaluated.
ExpState.totaltestedcr is the current number of evaluations in the given Slave, the following
code makes it available on the Master side in the CheckpointEvent.data field upon receiving
the SlaveCheckpoint event.

Listing 9: Sending the checkpoint event in standard.expdef

function onDied (cr)
{

. . .
S imulator . checkpointData (ExpState . t o t a l t e s t e d c r) ;
. . .

}

The migration period (ExpProperties.mix period) parameter introduced by our standard-mt.expdef
controls the migration frequency. A migration occurs after reaching the desired number of eval-
uations, expressed as a percentage of the gene pool capacity (ExpProperties.capacity): there
are capacity×mix period/100 evaluations between migrations. For the default mix period=1000,
the number of evaluations between migrations is 10× the capacity of the gene pool.

Listing 10: Checking the number of Slave’s evaluations in onSlaveCheckpoint() function,
standard-mt.expdef

function onSlaveCheckpoint ()
{

// check i f d e s i r ed number o f eva lua t i on s done?
i f (CheckpointEvent . data>=(ExpPropert ies . capac i ty ∗ExpPropert ies . mix per iod /100))
{

. . .
}

}

standard-mt.expdef supports one of two modes, selected by the ExpProperties.keep threads running

parameter:

• When keep threads running==0, each Slave is stopped by the Master after reaching the
desired number of evaluations. All gene pools will get an equal number of evaluations,
regardless of the relative Slave performance.

Listing 11: Handling the keep threads running==0 mode in the onSlaveCheckpoint()

function, standard-mt.expdef

{

10

. . .
S imulator . p r i n t (” Slave #” + CheckpointEvent . index + ” ” +

CheckpointEvent . data + ” eva luat i ons , s topping ”) ;
CheckpointEvent . s l a v e . stop () ;
S imulator . s l a v e s . cancelEventsFromSlave (CheckpointEvent . s l a v e) ;
. . .

}

• When keep threads running==1, the Master waits until all Slaves reach the desired num-
ber of evaluations and only then they are all stopped. This means that gene pools from
the “faster” Slaves will get more evaluations than those from the “slower” ones.

In this mode, the information about reaching the goal is stored in the g goal reached

array. All 1’s mean that all Slaves can be stopped. The array is not used in the first mode,
where we simply check the Slaves’ running state (they are being stopped one by one after
reaching the goal, so if they are all stopped, we are done).

Listing 12: Handling the keep threads running==1 mode in the onSlaveCheckpoint()

function, standard-mt.expdef

{
. . .
i f (g goa l r ea ched [CheckpointEvent . index])

return ; // a l r eady handled

Simulator . p r i n t (” Slave #” + CheckpointEvent . index + ” ” +
CheckpointEvent . data + ” eva lua t i on s ”) ;

g goa l r ea ched [CheckpointEvent . index] = 1 ;
i f (testAl lGoalsReached ())
{

Simulator . s l a v e s . s topAl l () ;
S imulator . s l a v e s . cance lA l lEvent s () ;

}
. . .

}

The purpose of cancelAllEvents() and cancelEventsFromSlave() is to protect against
the case where a Slave managed to emit more events before the Master could handle the first
of them (because events are asynchronous). Not cancelling the events might make the Master
receive more events even after a Slave has just been stopped.

If all Slaves have been stopped, the migration is executed. It is basically a retrieval of all
genotypes from Slaves into the Master Simulator (loadFromSlaves()), followed by a restart of
the work cycle, like in the onStart() function.

Listing 13: Migration-related source, standard-mt.expdef

function onSlaveCheckpoint ()
{

. . .
i f (Simulator . running && (Simulator . s l a v e s . running == 0))
{

Simulator . p r i n t (”migrat ing s l av e s imu la t i on s . . . ”) ;
loadFromSlaves () ; // may s e t SHOULD STOP
i f (SHOULD STOP)
{

Simulator . message (”Done %d migrat ions , s topping . ” % ExpState . migrat ions , 0) ;

11

Figure 4: Example CPU utilization charts. Left: Linux MATE System Monitor. Right: Windows
Task Manager.

Simulator . stop () ;
GenePools [0] . mergeInstances () ;

}
else
{

sendToSlaves () ;
GenePools [0] . mergeInstances () ;
S imulator . s l a v e s . s t a r tA l l () ;

}
}
. . .

}

function loadFromSlaves ()
{

Simulator . p r i n t (” load ing genotypes from s l a v e s . . . (migrat ions=” +
ExpState . migrat ions + ”) ”) ;

GenePools [0] . c l e a r () ;
for (var i = 0 ; i < Simulator . s l a v e s . s i z e ; i++)
{

var s = Simulator . s l a v e s [i] ;
var f roms lave = s . export (null , 2 , 0 , 0) ;
S imulator . import (” s t r i n g :// ” + fromslave , 2 + 128) ;
ExpState . t o t a l t e s t e d c r += s . exps ta te . t o t a l t e s t e d c r ;
ExpState . t o t a l t e s t s += s . exps ta te . t o t a l t e s t s ;

}
ExpState . migrat ions++;
Simulator . checkpointData (ExpState . migrat ions) ;
i f (ExpPropert ies . max migrations > 0 &&

ExpState . migrat ions >= ExpPropert ies . max migrations)
SHOULD STOP = 1 ;

}

In the standard-mt.expdef experiment definition, the migration stage temporarily stops all
Slave threads. This is demonstrated in the CPU utilization charts shown in Fig. 4; higher gene
pool capacities mean longer migration periods. Apart from these periods, threads are highly
independent and there is nearly no additional locking and synchronization, so an almost linear
speedup is possible when the number of threads is increased [26].

As described in Sect. 1.1, in this experiment Master does not perform any intensive work
and only reacts to events. However it still calls onStep(), so we use Simulator.sleep(delay)

to avoid using the processor unnecessarily. Computational experiments showed that the delay

12

does not affect performance in a noticeable way. The following delays were tested: 1ms, 10ms,
100ms, 1000ms. There was no significant correlation between the delay and the performance.
The only pattern found was an increase in the amount of time spent inside system calls when
the delay is decreased – it could be because of the delay function being called more times. The
conclusion may be different on other platforms, if, for example, some waiting periods cause
additional performance penalty due to a low timer resolution (e.g. if short waiting periods were
implemented as busy waiting).

3 Summary

This report demonstrated the numerous ways parallel computation can be implemented in the
Framsticks environment. It started by enumerating various fields of science and various kinds of
experiments where Framsticks has been used. Then, multithreaded and distributed architectures
and configurations have been presented. Sect. 2 discussed two experiment definitions (prime-mt
and standard-mt) that exploit multithreading and that are included in the official Framsticks
distribution. The first one serves as a minimal example of how parallelization can be implemented
in Framsticks. The second one is more complex: it shows how to deal with Slave experiments
that do not have an internal stop condition, how to migrate the evolved genotypes between
Slaves, and how to use Slave checkpoint events to monitor the progress of evolution.

References

[1] Walter de Back. Eco-evolutionary experiments with situated agents. Master’s thesis, 2006.
URL: http://www.framsticks.com/files/common/MSc_deBack_EcologyEvolution.pdf.

[2] Walter de Back, M. Wiering, and E. de Jong. Red Queen dynamics in a predator-
prey ecosystem. Proceedings of the 8th annual conference on genetic and evolutionary
computation, pages 381–382, 2006. URL: http://igitur-archive.library.uu.nl/vet/
2007-0302-210407/wiering_06_red.pdf.

[3] Andrzej Gajda, Adam Kups, and Mariusz Urbański. A connectionist approach to abductive
problems: employing a learning algorithm. In M. Ganzha, L. Maciaszek, and M. Paprzycki,
editors, Proceedings of the 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), pages 353–362. ACSIS, 2016. URL: http://dx.doi.org/10.15439/
2016F484, doi:10.15439/2016F484.

[4] Maciej Hapke and Maciej Komosinski. Evolutionary design of interpretable fuzzy controllers.
Foundations of Computing and Decision Sciences, 33(4):351–367, 2008. URL: http://www.
framsticks.com/files/common/Komosinski_EvolveInterpretableFuzzy.pdf.

[5] Matej Hoffmann. Structural coupling with environment and its modelling on neural driven
agents. Master’s thesis, 2006. URL: http://www.framsticks.com/files/common/MSc_
Hoffmann_StructuralCoupling.pdf.

[6] Wojciech Jaskowski and Maciej Komosinski. The numerical measure of symmetry for 3D
stick creatures. Artificial Life Journal, 14(4):425–443, Fall 2008. URL: http://dx.doi.
org/10.1162/artl.2008.14.4.14402, doi:10.1162/artl.2008.14.4.14402.

[7] Jacek Jelonek and Maciej Komosinski. Biologically-inspired visual-motor coordi-
nation model in a navigation problem. In Bogdan Gabrys, Robert Howlett,

13

http://www.framsticks.com/files/common/MSc_deBack_EcologyEvolution.pdf
http://igitur-archive.library.uu.nl/vet/2007-0302-210407/wiering_06_red.pdf
http://igitur-archive.library.uu.nl/vet/2007-0302-210407/wiering_06_red.pdf
http://dx.doi.org/10.15439/2016F484
http://dx.doi.org/10.15439/2016F484
http://dx.doi.org/10.15439/2016F484
http://www.framsticks.com/files/common/Komosinski_EvolveInterpretableFuzzy.pdf
http://www.framsticks.com/files/common/Komosinski_EvolveInterpretableFuzzy.pdf
http://www.framsticks.com/files/common/MSc_Hoffmann_StructuralCoupling.pdf
http://www.framsticks.com/files/common/MSc_Hoffmann_StructuralCoupling.pdf
http://dx.doi.org/10.1162/artl.2008.14.4.14402
http://dx.doi.org/10.1162/artl.2008.14.4.14402
http://dx.doi.org/10.1162/artl.2008.14.4.14402

and Lakhmi Jain, editors, Knowledge-Based Intelligent Information and Engineer-
ing Systems, volume 4253 of Lecture Notes in Computer Science, pages 341–348.
Springer, Berlin/Heidelberg, 2006. URL: http://www.framsticks.com/files/common/

BiologicallyInspiredVisualMotorCoordinationModel.pdf, doi:10.1007/11893011_

44.

[8] Maciej Komosinski. Evolutionary design of tall structures. Research report RA–06/12,
Poznan University of Technology, Institute of Computing Science, 2012.

[9] Maciej Komosinski, Grzegorz Koczyk, and Marek Kubiak. On estimating similarity of arti-
ficial and real organisms. Theory in Biosciences, 120(3-4):271–286, December 2001. URL:
http://dx.doi.org/10.1007/s12064-001-0023-y, doi:10.1007/s12064-001-0023-y.

[10] Maciej Komosinski and Marek Kubiak. Taxonomy in Alife. Measures of similarity
for complex artificial organisms. In Jozef Kelemen and Petr Sośık, editors, Advances
in Artificial Life, volume 2159 of Lecture Notes in Computer Science, pages 685–694.
Springer, Berlin/Heidelberg, 2001. URL: http://www.framsticks.com/files/common/

Komosinski_TaxonomyAlife_ECAL2001.pdf, doi:10.1007/3-540-44811-X_79.

[11] Maciej Komosinski and Marek Kubiak. Quantitative measure of structural and geometric
similarity of 3D morphologies. Complexity, 16(6):40–52, 2011. URL: http://dx.doi.org/
10.1002/cplx.20367, doi:10.1002/cplx.20367.

[12] Maciej Komosinski and Adam Kups. Models and implementations of timing processes using
Artificial Life techniques. Research report RA–05/09, Poznan University of Technology,
Institute of Computing Science, 2009.

[13] Maciej Komosinski and Adam Kups. Implementation and simulation of the Scalar Timing
Model. Bio-Algorithms and Med-Systems, 7(4):41–52, 2011.

[14] Maciej Komosinski and Adam Kups. Time-order error and scalar variance in a com-
putational model of human timing: simulations and predictions. Computational Cogni-
tive Science, 1(1):1–24, 2015. URL: http://dx.doi.org/10.1186/s40469-015-0002-0,
doi:10.1186/s40469-015-0002-0.

[15] Maciej Komosinski, Adam Kups, Dorota Leszczyńska-Jasion, and Mariusz Urbański. Iden-
tifying efficient abductive hypotheses using multi-criteria dominance relation. ACM Trans-
actions on Computational Logic, 15(4):28:1–28:20, 2014. URL: http://doi.acm.org/10.
1145/2629669, doi:10.1145/2629669.

[16] Maciej Komosinski, Adam Kups, and Mariusz Urbanski. Multi-criteria evaluation of abduc-
tive hypotheses: towards efficient optimization in proof theory. In Proceedings of the 18th
International Conference on Soft Computing, pages 320–325, Brno, Czech Republic, 2012.

[17] Maciej Komosinski, Agnieszka Mensfelt, Pawe l Topa, and Jaros law Tyszka. Applica-
tion of a morphological similarity measure to the analysis of shell morphogenesis in
Foraminifera. In Aleksandra Gruca, Agnieszka Brachman, Stanisaw Kozielski, and Tadeusz
Czachórski, editors, ManMachine Interactions 4, volume 391 of Advances in Intelligent Sys-
tems and Computing, pages 215–224. Springer, 2016. URL: http://dx.doi.org/10.1007/
978-3-319-23437-3_18, doi:10.1007/978-3-319-23437-3_18.

14

http://www.framsticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationModel.pdf
http://www.framsticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationModel.pdf
http://dx.doi.org/10.1007/11893011_44
http://dx.doi.org/10.1007/11893011_44
http://dx.doi.org/10.1007/s12064-001-0023-y
http://dx.doi.org/10.1007/s12064-001-0023-y
http://www.framsticks.com/files/common/Komosinski_TaxonomyAlife_ECAL2001.pdf
http://www.framsticks.com/files/common/Komosinski_TaxonomyAlife_ECAL2001.pdf
http://dx.doi.org/10.1007/3-540-44811-X_79
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1186/s40469-015-0002-0
http://dx.doi.org/10.1186/s40469-015-0002-0
http://doi.acm.org/10.1145/2629669
http://doi.acm.org/10.1145/2629669
http://dx.doi.org/10.1145/2629669
http://dx.doi.org/10.1007/978-3-319-23437-3_18
http://dx.doi.org/10.1007/978-3-319-23437-3_18
http://dx.doi.org/10.1007/978-3-319-23437-3_18

[18] Maciej Komosinski, Agnieszka Mensfelt, Pawe l Topa, Jaros law Tyszka, and Szymon
Ulatowski. Foraminifera: genetics, morphology, simulation, evolution. http://www.

framsticks.com/foraminifera, 2014.

[19] Maciej Komosinski and Jan Polak. Evolving free-form stick ski jumpers and their neural
control systems. In Proceedings of the National Conference on Evolutionary Computation
and Global Optimization, pages 103–110, Poland, 2009. URL: http://www.framsticks.
com/files/common/Komosinski_Polak_EvolvedSkiJumping.pdf.

[20] Maciej Komosinski and Krzysztof Rosinski. Estimating similarity of neural network dynam-
ics. Research report RA–10/10, Poznan University of Technology, Institute of Computing
Science, 2010.

[21] Maciej Komosinski and Adam Rotaru-Varga. Comparison of different genotype encodings
for simulated 3D agents. Artificial Life Journal, 7(4):395–418, Fall 2001. URL: http:

//dx.doi.org/10.1162/106454601317297022, doi:10.1162/106454601317297022.

[22] Maciej Komosinski and Szymon Ulatowski. Framsticks Network Server. http://www.

framsticks.com/common/server.html, 2000.

[23] Maciej Komosinski and Szymon Ulatowski. Genetic mappings in artificial genomes. Theory
in Biosciences, 123(2):125–137, September 2004. URL: http://dx.doi.org/10.1016/j.
thbio.2004.04.002, doi:10.1016/j.thbio.2004.04.002.

[24] Maciej Komosinski and Szymon Ulatowski. Framsticks: Creating and understanding com-
plexity of life. In Maciej Komosinski and Andrew Adamatzky, editors, Artificial Life Models
in Software, chapter 5, pages 107–148. Springer, London, 2nd edition edition, 2009.

[25] Maciej Komosinski and Szymon Ulatowski. Framsticks web site, 2016. http://www.

framsticks.com.

[26] Maciej Komosinski and Szymon Ulatowski. Multithreaded computing in evo-
lutionary design and in artificial life simulations. The Journal of Super-
computing, pages 1–15, 2016. URL: http://www.framsticks.com/files/common/

MultithreadedEvolutionaryDesign.pdf, doi:10.1007/s11227-016-1923-4.

[27] Pete Mandik. Synthetic neuroethology. Metaphilosophy, 33(1&2):11–29, 2002. URL: http:
//www.petemandik.com/philosophy/papers/synthneur.pdf.

[28] Pete Mandik. Varieties of representation in evolved and embodied neural networks. Biology
and Philosophy, 18(1):95–130, 2003. URL: http://www.framsticks.com/files/common/
Mandik_RepresentationsInNeuralNetworks.pdf.

[29] Raja Mohamed and P. Raviraj. Biologically inspired design framework for robot in dynamic
environments using Framsticks. International Journal on Bioinformatics & Biosciences,
1(1):27–35, 2011.

[30] J.A. Pyles, J.O. Garcia, D.D. Hoffman, and E.D. Grossman. Visual perception
and neural correlates of novel ‘biological motion’. Vision Research, 47(21):2786–
2797, 2007. URL: http://dx.doi.org/10.1016/j.visres.2007.07.017, doi:10.1016/
j.visres.2007.07.017.

15

http://www.framsticks.com/foraminifera
http://www.framsticks.com/foraminifera
http://www.framsticks.com/files/common/Komosinski_Polak_EvolvedSkiJumping.pdf
http://www.framsticks.com/files/common/Komosinski_Polak_EvolvedSkiJumping.pdf
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1162/106454601317297022
http://www.framsticks.com/common/server.html
http://www.framsticks.com/common/server.html
http://dx.doi.org/10.1016/j.thbio.2004.04.002
http://dx.doi.org/10.1016/j.thbio.2004.04.002
http://dx.doi.org/10.1016/j.thbio.2004.04.002
http://www.framsticks.com
http://www.framsticks.com
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
http://dx.doi.org/10.1007/s11227-016-1923-4
http://www.petemandik.com/philosophy/papers/synthneur.pdf
http://www.petemandik.com/philosophy/papers/synthneur.pdf
http://www.framsticks.com/files/common/Mandik_RepresentationsInNeuralNetworks.pdf
http://www.framsticks.com/files/common/Mandik_RepresentationsInNeuralNetworks.pdf
http://dx.doi.org/10.1016/j.visres.2007.07.017
http://dx.doi.org/10.1016/j.visres.2007.07.017
http://dx.doi.org/10.1016/j.visres.2007.07.017

[31] J.A. Pyles and E.D. Grossman. Neural adaptation for novel objects during dynamic artic-
ulation. Neuropsychologia, 47(5):1261–1268, 2009.

[32] Piotr Sniegowski. Development of the environment for distributed computing in the
Framsticks system. Master’s thesis, Institute of Computing Science, Poznan Univer-
sity of Technology, 2013. http://www.framsticks.com/files/common/MSc_Sniegowski_

DistributedFramsticks.pdf.

[33] Matthew Templeton. On the origin of robotic species. Master’s thesis, 2011. URL: http:
//www.framsticks.com/files/common/MSc_Templeton_RoboticSpecies.pdf.

16

http://www.framsticks.com/files/common/MSc_Sniegowski_DistributedFramsticks.pdf
http://www.framsticks.com/files/common/MSc_Sniegowski_DistributedFramsticks.pdf
http://www.framsticks.com/files/common/MSc_Templeton_RoboticSpecies.pdf
http://www.framsticks.com/files/common/MSc_Templeton_RoboticSpecies.pdf

	Introduction
	Multithreaded and distributed architectures in Framsticks

	Two experiment definitions: prime-mt and standard-mt
	prime-mt experiment definition
	standard-mt experiment definition

	Summary

