
Multithreaded computing in evolutionary design

and in artificial life simulations

Maciej Komosinski Szymon Ulatowski

Institute of Computing Science,
Poznan University of Technology,

Piotrowo 2, 60-965 Poznan, Poland.
maciej.komosinski@cs.put.poznan.pl

Abstract

This article investigates low-level and high-level multithreaded performance of evo-
lutionary processes that are typically employed in evolutionary design and artificial life.
Computations performed in these areas are specific because evaluation of each genotype
usually involves time-consuming simulation of virtual environments and physics. Com-
putational experiments have been conducted using the Framsticks simulator running
a multithreaded version of a standard evolutionary experiment. Tests carried out on
5 diverse machines and 2 operating systems demonstrated how low-level performance
depends on the number of physical and logical CPU cores and on the number of threads.
Two string implementations have been compared, and their raw performance turned out
to fundamentally differ in a multithreading setup. To improve high-level performance
of parallel evolutionary algorithms, i.e. the quality of optimized solutions, a new dis-
tribution scheme that is especially useful and efficient for complex representations of
solutions – the convection distribution – has been introduced. This new distribution
scheme has been compared against a random distribution of genotypes among threads
that carry out evolutionary processes.

1 Introduction

In the areas of evolutionary design and artificial life, evolutionary processes [6, 5] are used
to optimize designs (structures, constructs) or to mimic the biological world. In both cases,
computer simulation plays a key role. However, simulating physics requires intensive com-
putation, and the more the detail is expected, the more the computation is necessary. For-
tunately, it is often possible to divide the simulated system into independent parts so that
computations can be performed in parallel. This opens up a way to speed up the process
of simulation, but still requires a lot of computing power and some method of distribution
among multiple processors.

The most trivial way to distribute computation in evolutionary processes with a single
gene pool is the master–slave architecture [4, 37, 1, 17, 32] where slaves perform the time-
consuming evaluation of genotypes, and the master performs selection, crossing over and
mutation (Fig. 1). This can be generalized into a coarse-grained architecture [4, 1] where
slaves perform separate and independent evolutionary processes. In the approach described
here, slaves occasionally send their results to the master process that performs migration (re-
ceives genotypes and redistributes them back to slaves), but there is no direct communication
between slaves.

This paper has been published in The Journal of Supercomputing 1–15, 2016.
http://dx.doi.org/10.1007/s11227-016-1923-4

1

maciej.komosinski@cs.put.poznan.pl
http://dx.doi.org/10.1007/s11227-016-1923-4

Master

Slave 0 Slave 1 Slave 2 Slave 3 Slave 4

Figure 1: A basic parallel architecture typically used for multithreaded evolutionary ex-
periments. In the most trivial scenario, slaves evaluate genotypes, and the master process
performs mutation, crossover and selection. In a more complex setup used in this work, slaves
are independent evolutionary processes, and the master thread migrates genotypes between
slaves.

For tests and computational experiments, the Framsticks simulator [25] is employed here.
Since its initial releases in 1996, this simulator has been used as a computing engine in
a number of diverse applications, including comparison of genetic encodings in artificial
life and evolutionary design [23], estimating symmetry of evolved and designed agents [14],
employing similarity measure to organize evolved constructs [20, 18], bio-inspired visual-
motor coordination [15] and real-time coordination, modeling robots [31] and optimizing
fuzzy controllers, user-driven (interactive, aesthetic) evolution, synthetic neuroethology [27,
28], analyses of brain activity evoked by perception of biological motion [34, 35], modeling
perception of time in humans [21], modeling foraminiferal genetics, morphology, simulation,
and evolution [22], and modeling communication, predator–prey coevolution, speciation, and
other biological phenomena [7]. These applications and the fact that Framsticks core is
implemented in a low-level language (C++) for high efficiency but also features a higher-level
scripting language, make it a representative example of software that is used for modeling
and simulation of life, and in particular, evolutionary processes [19].

Many of the applications enumerated above require considerable amounts of computing
power, and in most cases the more the computing resources are available, the more mean-
ingful the experiments and their results are. With modern computers equipped with many
processors and cores and a clear direction of hardware development in the near future, us-
ing multithreading allows to exploit more computing power on a single machine in a single
experiment.

The Framsticks environment allows for a flexible configuration of the way computing is
parallelized, distributed and organized. Multi-level and hybrid architectures are possible
both in centralized and distributed scenarios [37, 1, 17], because every Framsticks server can
perform multithreaded computation, genotype transfer, or both [24]. This paper focuses on
a basic one-machine architecture shown in Fig. 1: the master thread can create, delete and
control slave threads. The master thread does not perform any continuous work and only
redistributes genotypes among slaves during migrations. Unlike the traditional master–slave
evolutionary algorithm where the master process runs the optimization algorithm and slaves
evaluate individual solutions, here slaves perform independent evolutionary processes. For
distributed configurations, this architecture is typically employed in machines that are end
nodes. This is where the biggest gain can be achieved from parallel optimization, and this
is currently the most popular architecture among researchers that do not use specialized
high-end configurations.

The goal of this work is to investigate and improve both low-level and high-level per-
formance of parallel evolutionary algorithms in optimization of solutions that need much
computational power to evaluate. Optimizing three-dimensional structures in evolutionary
design and in artificial life is an example of such applications. Section 2 focuses on techni-
cal aspects of raw, low-level performance of multithreaded evolutionary optimization, and
investigates how the number of threads, gene pool capacity, CPU architecture and string

2

implementation influence the number of evaluated genotypes. Section 3 focuses on high-level
performance of parallel evolutionary algorithms – performance is no longer measured as the
number of genotype evaluations; it is rather the actual fitness that is achieved by evolutionary
optimization. To improve the quality of optimized solutions, a new distribution scheme of
genotypes among slave processes is introduced and tested. Section 4 summarizes this work.

2 Multithreading performance

All tests reported in this work were performed using the standard-mt experiment definition
– a multithreaded version of the most common and versatile Framsticks evolutionary opti-
mization experiment [24]. This experiment script performs physical simulation of creatures
built from genotypes that are mutated and crossed over in the course of a steady-state (i.e.,
non-generational) evolution [16, 38, 26]. The most computationally expensive part of the
optimization process is the evaluation of fitness of each genotype. This evaluation is based
on the creature’s performance in the simulated physical world. The number of evaluations
performed in the fixed amount of time (500 seconds) is our measure of performance.

Each test has been run for varying thread count and varying values of capacity. Capacity
is the size of the slave gene pool (the number of genotypes) and as such, it influences the
dynamics of the evolutionary optimization process.

In the multithreaded implementation, capacity and mix period parameters determine
the migration frequency. A migration occurs after reaching the desired number of geno-
type evaluations, expressed as the percentage of the gene pool capacity : there are capac-
ity×mix period/100 evaluations between migrations. For example, for the default value of
mix period=1000 that is used in all the experiments in this section, the number of evaluations
performed by each slave between migrations is 10×capacity of the gene pool.

In order to precisely compare raw performance across multiple runs, the actual genetic
optimization has been disabled by removing the sources of genotype variability – only the
evaluation (simulation) and selection is performed, continuously operating on identical geno-
types of medium complexity. The amount of memory required by all threads combined was
at least one order of magnitude smaller than the amount of available RAM, and slaves did
not perform any file or network operations.

The experiments were run on five machines – a choice of laptop, desktop and server
computers running Linux and Windows:

• 4/4-L. Desktop 4-core Intel Core2 Quad processor Q6600 [9] running Linux Debian
x86 64 3.14-2-amd64 and having its CPU clock forced to a constant frequency of 1.6
GHz for better reproducibility.

• 4/4-W8. Desktop 4-core Intel Core i5-2500 [10] running 64-bit Windows 8.1 Pro in
safe boot mode which forced the CPU clock to a constant frequency of 3.3 GHz.

• 4/8-W7. Desktop 4-core 8-thread Intel Core i7-4790 processor [13] running 64-bit
Windows 7 Pro in safe boot mode which forced the CPU clock to a constant frequency
of 3.6 GHz.

• 4/8-W8. Laptop 4-core 8-thread Intel Core i7-4700MQ processor [12] running 64-bit
Windows 8.1 Pro in safe boot mode which forced the CPU clock to a constant frequency
of 2.4 GHz.

• 16/32-L. Server 8-core 16-thread (× 2 CPU) Intel Xeon E5-2660 processor (max turbo
frequency 3 GHz) [11] running Linux Ubuntu x86 64 3.2.0-52-generic.

This choice of machines corresponds to configurations that are currently most often used by
researchers for evolutionary experiments, either as standalone computers, or as end-nodes

3

COW (copy-on-write) – uses
reference counting

PU (private unprotected) –
allocates private character
buffers for individual string
objects

Synchronization in a
multi-threaded
environment

Reference counter is protected
by a mutex

No synchronization necessary

String copy operation
(constructor, assignment)

Only a reference is copied –
faster for long strings

String contents must be copied
– faster for short strings

Memory Efficient: usually stores only
one copy of each unique string
contents

Inefficient: stores each string
content separately

Table 1: Two basic approaches to managing string contents that were compared in compu-
tational experiments.

in a hybrid distributed evolutionary architecture. This also allows to study in detail the
most interesting range, from 4-core to 16-core machines, with and without hyper-threading
technology [29, 8], and investigate relationships between the number of cores, threads, and
the resulting performance.

In all 3D charts presented in this section, red, green and blue surfaces demonstrate 40%,
70%, and 100% progress of the experiment, respectively. The blue surface presents the final
results, while red and green surfaces are approximate and only shown to illustrate progress
at intermediate stages of the experiment.

2.1 String implementation: reference counting vs. copying

In most computer programs, manipulating strings (sequences of characters) is a frequent and
ubiquitous operation. The two basic approaches to managing string contents are charac-
terized in Table 1. Usually, the physical simulation and the simulation of neural networks
do not use strings at all. On the other hand, a typical evolutionary optimization algorithm
processes genotypes that are strings, and even if they remain unchanged, they are copied.
The scripting subsystem of each application likely relies heavily on processing of strings. It
is impossible to predict which of the two string implementations is more efficient and how
big is the difference on various machines, hence we compared the performance of both in
practical, multithreaded evolutionary experiments using Framsticks.

The experiments showed that the COW string implementation was seriously limiting mul-
tithreaded performance [36] because synchronization was based on a single pthreads mutex [3]
shared between all strings. When increasing the number of CPU cores, the PU string im-
plementation enabled a nearly linear parallelization speedup of the evolutionary experiment
and did not introduce any significant memory footprint. The PU approach was up to 1.35x
faster than COW for the 4/4-L machine and up to 10.8x faster for the 16/32-L machine.
The difference in performance of both string implementations on the 16/32-L machine is
illustrated in the two bottom rows in Fig. 2.

This speedup was possible because the synchronization of string access was no longer
necessary, and physical simulations and evolutionary algorithms can perform independent
computations in each thread, with only a small minority of operations involving inter-thread
communication and synchronization. Therefore, the PU string implementation was used in
all the experiments in the following sections. The need for locking (which causes delays) is
the price paid for the ability to access shared memory space, which is not the only possible
implementation. Another possibility would be to use operating system processes instead of
threads – this would provide a complete separation between processes, but at the same time
would make it more difficult to access shared data during master–slave interactions.

4

4/4-Linux

4/8-Windows 8.1

4/8-Windows 7

16/32-Linux

16/32-Linux with

COW string

Figure 2: The number of master simulation steps (left column) and total slave genotype
evaluations (right column) for four machines (the characteristics for the 4/4-W8 machine
were similar to the 4/8-W8 machine). Slave gene pool capacities are 5, 10, 25, 50, 100, 200,
400, 600. The number of threads varies from 1 to 20, and for the 16/32-L machine, from
1 to 48. We show results for thread count larger than the number of cores to enable direct
comparisons between machines.

5

1 2 3 4

Threads

36.9

37.0

37.1

37.2

37.3

37.4

d
ro

p
 t

o
 9

9
%

 o
f

1
-t

h
re

a
d

1 2 3 4 5 6 7 8

Threads

55

60

65

70

75

80

85

90

95

drop to 98% of 1-thread

1 4 6 8 1012131415161718202224262829303132

Threads

60

70

80

90

100

drop to 88% of 1-thread

Figure 3: Genotype evaluation count per second per thread (excluding migration time) for
configurations 4/4-L, 4/8-W8, and 16/32-L. Physical cores are shown in black.

2.2 Simulation and evolution

Since evolutionary processes and simulation performed by individual threads are highly inde-
pendent and there is nearly no additional locking and synchronization apart from migrations,
an almost linear speedup can be achieved when the number of threads is increased. This can
indeed be observed in Fig. 2 except for the COW string implementation discussed in the
previous section.

Our performance measurements were able to reveal key properties of CPU architectures
and their quantitative influence on evolutionary performance. For configuration 4/4-L that
has 4 physical cores, there are two nearly linear segments in the performance shown in the
right column in Fig. 2: a linear slope for 1–4 threads and a nearly constant performance for
4+ threads. Configurations 4/8-W7, 4/8-W8, and 16/32-L feature hyper-threading technol-
ogy (Intel’s simultaneous multithreading implementation, SMT [29, 8]) and can execute two
simultaneous threads on each core, with slightly less performance compared to one thread
per core, as additional threads share the same CPU hardware resources. This technology
yields two nearly linear slopes: one for increasing the number of threads up to the number
of physical cores, and another, less steep slope, up to twice the number of cores. From this
perspective, the CPU behaves as if it contained additional, less capable, “logical” cores.

This influence of the hyper-threading technology is also demonstrated in Fig. 3, which
compares raw per-thread performance for varying thread count. This analysis excludes the
migration slowdown caused by the short periods when all slave threads are stopped – migra-
tions are an important part of the experiment, but they do not contribute to our performance
measure which is the genotype evaluation count. The parallelization speedup is not exactly
linear, but quite close, especially for the quad-core configuration 4/4-L where the combined
4 threads’ performance was just 1% lower than 4× single thread. Parallelization speedup
is similar in configuration 16/32-L where 4 simultaneous threads also reached 99% of the
theoretical ideal, but the speedup dropped to 88% for 16 threads.

When tested across different values of the gene pool capacity, smaller gene pools experi-
ence more frequent migrations (Fig. 4), as the number of genotypes created and evaluated
between migrations is proportional to the gene pool capacity. For a given capacity, the num-
ber of migrations decreases with a decreasing processing power of a single slave thread (i.e.,
with an increasing number of threads), but it is also influenced by the master thread being
delayed because of slave threads consuming more processing power. Any such delay increases
the time interval between migrations decreasing the number of migrations, which is especially
visible for small capacities where the migration period is short. While the number of per-
formed migrations varies highly as Fig. 4 shows, the influence on the number of evaluated
genotypes is so minimal that it cannot be noticed in the right column in Fig. 2.

The left column in Fig. 2 shows the number of simulation steps performed by the master
thread. For most of the time, the master thread’s job in this evolutionary experiment is just

6

Figure 4: Migration count for configuration 4/8-W8. This relationship looked similar for all
configurations.

0 5 10 15 20 25 30 35
Requested sleep time [ms]

0

5

10

15

20

25

30

35

A
ct

u
a
l
sl

e
e
p
 t

im
e
 [

m
s]

Windows 7
Windows 8
Windows 8.1
Windows 10
Linux

Figure 5: The interval the thread waits to be resumed after a “sleep” function is called.
Windows 7, 8 and 8.1 behave in exactly the same way. Linux provides a practically perfect,
linear characteristic. Windows 10 (not employed in performance tests) makes a thread wait
for slightly longer than requested. Lines between points are only guides for the eye.

waiting for slave events, which means the number of steps is not correlated to the actual
amount of work performed in the experiment. It does, however, show the different handling
of the master thread depending on the CPU load and the operating system scheduling policy
(cf. [33]).

To avoid unnecessary use of the CPU by the master thread, this thread was asked to sleep
for 10 milliseconds in each simulation step. Given the test duration of 500 seconds and the
10ms delay, the expected number of steps in ideal conditions is 500/0.01=50,000. The actual
number of steps varies; it is close to 50,000 on Linux machines 4/4-L and 16/32-L, and it
does not exceed 35,000 on Windows machines 4/8-W7 and 4/8-W8, which on average sleep
for 5.6 milliseconds more than requested [30] as illustrated in Fig. 5.

In configurations 4/4-L, 4/8-W7 and 16/32-L (but not in 4/8-W8), the master thread
performance barely decreases under increased slave thread load. This suggests that the op-
erating system measures the actual CPU time used by each individual thread and schedules

7

accordingly. The master thread, waiting most of the time, uses less CPU than its fair share
and, therefore, it is not limited by the CPU shortage when the share decreases with an in-
creasing thread count. The positive side effect of such behavior is that the master thread
latency during the slave event handling is minimized. This does not seriously influence the
experiment (except for, perhaps, slightly disrupting the migration count by delaying migra-
tions), because the amount of the useful work depends almost entirely on the performance of
slave threads. Configuration 4/8-W8 was the only laptop machine; as such, its mobile pro-
cessor did not have an integrated heat spreader like desktop processors had, and this might
influence the way the operating system scheduler allocated a busy CPU to a mostly idle
thread. These differences between platforms in the way the master thread is managed do not
affect the number of evaluated genotypes and the performance of the evolutionary process;
if a particular scheduling behavior were required by an application, it can be enforced by
setting priorities of threads and processes accordingly.

3 Convection distribution scheme

Since 1980s, a number of parallel evolutionary architectures have been proposed and im-
plemented, differing in the way the population is decentralized, the topology of connections
between nodes, their roles, and the way migration of genotypes is performed [4, 37, 1, 17, 32].
The most trivial approach to distributing genotypes to subpopulations (slaves) in centralized
(master–slave) and coarse-grained architectures is to send to each slave the entire gene pool,
or a random sample of the entire gene pool. This approach leverages the raw power of parallel
evolutionary processes, but does not take advantage of any specific logic like migrating best
genotypes [37, 1, 17].

In this section a new distribution scheme is introduced, namely the Convection distribution
scheme. This way of distributing genotypes is especially valuable for applications in evolu-
tionary design and artificial life, where solutions are extremely complex due to sophisticated
genotype-to-phenotype mapping, and it is much easier to migrate genotypes based on known
fitness values or measured performance than on compound phenotypic (e.g., morphological)
characteristics. The proposed approach differs from the random distribution of genotypes in
that it controls the selective pressure in each slave – each slave receives genotypes that share
similar fitness, and this approach still does not require any direct communication between
slaves. This distribution scheme is called convection because it facilitates continuous evolu-
tionary progress just like a convection current or a conveyor belt: each slave always tries to
independently improve genotypes of a specific fitness range which overall ensures more fitness
diversity and avoids the domination of (and the convergence towards) the current globally
best genotypes [5]. These occasional, short ascending trends (convections) are visible in
the entire range of fitness values in Fig. 9. As an effect of slave–master–slave migrations,
genotypes move from one slave to another and they can follow different paths in the fitness
landscape on their way towards improvements.

In the convection distribution scheme, genotypes in the master’s gene pool are sorted
according to fitness. Then each slave receives a subset of genotypes that fall within a range
of fitness values. In the computational experiment, two methods of determining fitness ranges
have been compared. In the first method, the entire fitness range has been divided into equal
intervals (as many as there are slaves); if there are no genotypes in some fitness range, the
corresponding slave receives genotypes from the nearest lower non-empty fitness interval. In
the second method, the genotypes in master have been sorted according to fitness, and then
divided into as many sets as there are slaves so that each slave receives the same number of
genotypes. This idea is illustrated in Fig. 6.

The experiment concerned evolution of simulated 3D structures that maximized vertical
position of the center of mass using the f1 genetic encoding. This encoding is a direct mapping

8

Fi
tn
e
ss

min

max

Fi
tn
e
ss

min

max

Fi
tn
e
ss

min

max

Figure 6: An illustration of three distribution schemes – from left to right: Random, Con-
vection intervals (equal width) and Convection intervals (equal number of genotypes). The
fitness of 20 genotypes is shown as red circles, and 4 subpopulations (slaves) are depicted as
green boxes.

between letters and parts of a 3D structure: ‘X’ represents a rod (a stick), parentheses
encode branches in the structure, and additional symbols influence properties like length or
rotation. The encoding is able to represent arbitrary tree-like 3D structures. Mutations
modify individual aspects of the structure by adding or removing parentheses in random
places in the genotype, or by adding and removing random symbols. Two-point crossover is
used, and additional repair mechanisms validate the genotype by fixing parentheses if needed.
Details of this genetic encoding are provided in [23].

There were 30 slaves (threads), each running a steady-state evolutionary algorithm with
a gene pool capacity of 100. In evolutionary algorithms, positive and negative selection
schemes are used to decide which solutions should be reproduced and which ones should be
removed from the population. One of the most popular methods of selection is tournament
selection [2], where a “tournament” is held between k randomly chosen individuals to select
the single individual with the best fitness. In our experiments, the negative selection was
random, and the positive selection was tournament selection of size k = 2 (lower selective
pressure) or k = 5 (higher selective pressure). The master thread managed migrations
of 30×100 genotypes. Two migration frequencies were compared: less frequent (evolution
stops after 100 migrations performed every 10,000 genotype evaluations per slave) and more
frequent (evolution stops after 1,000 migrations performed every 1,000 evaluations per slave).
Since there were 10x more migrations when they occurred 10x more often, the total number
of evaluated genotypes in all experiments was the same. Altogether, in this computational
experiment, there were 20 independent evolutionary runs for each tournament size (2 and 5),
for each migration frequency, and for each distribution scheme (random, convection based
on the equal width of fitness intervals, convection based on the equal number of sorted
genotypes) – a total of 20 × 2 × 2 × 3 = 240 evolutionary runs. The best individual in the
last master population is considered the final result of each experiment.

In this experiment we focus on the analysis of performance (the quality of obtained
results) of parallel evolutionary algorithms with different distribution schemes. Discussing
the specifics of evolved 3D structures, albeit interesting, is outside of the scope of this paper.
To illustrate outcomes of the evolutionary process and sample structures that were evolved,
a sequence of best individuals found after subsequent migrations is shown in Fig. 7.

Fig. 8 summarizes the results of this experiment for tournament size of 2 (left column,

9

Figure 7: A sample sequence (top to bottom, left to right) of the best individuals found in
the master population after subsequent migrations. Their behavior in simulation is shown at
https://www.youtube.com/watch?v=ZRIeOYpTS04.

Rand Ci(ew) Ci(en)
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Rand vs Ci(ew): p-value = 0.0046
Rand vs Ci(en): p-value < 0.001
Ci(ew) vs Ci(en): p-value = 0.88

Rand Ci(ew) Ci(en)
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Rand vs Ci(ew): p-value < 0.001
Rand vs Ci(en): p-value < 0.001
Ci(ew) vs Ci(en): p-value = 0.19

Rand Ci(ew) Ci(en)
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Rand vs Ci(ew): p-value = 0.0086
Rand vs Ci(en): p-value = 0.0025
Ci(ew) vs Ci(en): p-value = 0.85

Rand Ci(ew) Ci(en)
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Rand vs Ci(ew): p-value < 0.001
Rand vs Ci(en): p-value < 0.001

Ci(ew) vs Ci(en): p-value = 0.0036

Figure 8: Comparison of three genotype distribution schemes: Random, Convection inter-
vals (equal width) and Convection intervals (equal number of genotypes). In all boxplots,
vertical axis is fitness – the elevation of the center of mass of the best found 3D structure.
Columns: tournament selection of size 2 (left) and 5 (right). Rows: 100 migrations every
10,000 genotype evaluations (top) and 1,000 migrations every 1,000 evaluations (bottom).

10

https://www.youtube.com/watch?v=ZRIeOYpTS04

low selection pressure) and 5 (right column, high selection pressure), and different migration
frequencies (top and bottom rows). Despite the difficulty of this optimization task and
numerous local optima causing high variance of the best achieved fitness, both convection
distribution schemes performed similarly well. In all experiments both schemes proved to be
significantly better than the random distribution; p-values are shown for a two-tailed t-test.
The improvement provided by the convection distribution schemes is more pronounced when
the selective pressure is higher (the tournament selection of size 5).

The convection distribution scheme can be very efficiently implemented because it only
concerns fitness values, and does not involve operations on phenotypes or computing pairwise
statistics like estimating diversity or dissimilarities between individuals [20, 18, 5]. This is
especially important in research on artificial life and evolutionary design, where estimating
similarity of solutions is problematic and time-consuming. In such applications, the convec-
tion distribution scheme proves to be a simple and fast method that significantly improves
the dynamics of the distributed evolutionary process. It can also be implemented as a selec-
tion scheme in a non-distributed, single population architecture. By promoting diversity of
fitness values, convection distribution schemes encourage diversity of solutions and, therefore,
counteract population stability and premature convergence, as demonstrated in Fig. 9.

4 Summary and further work

This article discussed multithreaded performance of evolutionary processes that are typically
employed in evolutionary design and artificial life. On a technical note, the experiments
revealed that the string implementation that used reference counting and a mutex was much
less efficient in a multithreading setup than a private unprotected string implementation.
The negative impact of the mutex on overall performance increased as the number of threads
increased. For more than 4 threads and the copy-on-write string, the overall performance
started decreasing even if there were more than 4 CPU cores available. This illustrates
the rationale behind using string implementations that do not require synchronization in
multithreaded applications.

Further performance analyses confirmed that the evolutionary algorithm that requires the
simulation of physics and control systems to evaluate genotypes can be efficiently parallelized.
This is because in evolutionary design and artificial life experiments, evaluation of genotypes
can usually be implemented as highly independent (an exception would be the environment
where most individuals interact frequently). The CPU architecture (the number of physical
and logical CPU cores) determines the speedup that can be achieved given a specific number
of independent subpopulations (threads). For a maximal performance in the evolutionary
architecture considered here, the number of subpopulations should be equal to the number
of “logical” CPU cores, as the master thread only performs migrations.

The convection distribution scheme that was introduced in this paper proved to be sig-
nificantly better than the random (uniform) distribution of genotypes among slave subpop-
ulations. One of the reasons for this efficiency may be the fact that genotypes with similar
fitness values are usually similar, and crossing over of similar parent genotypes is less likely to
degrade the quality of their children. The performance of the convection distribution scheme
can likely be further improved by employing more sophisticated ways of determining fitness
intervals. The influence of the frequency of migrations on the performance of the evolution-
ary algorithm should be investigated as well. The promising performance of this distribution
scheme should be tested on optimization benchmark functions, and these tests should in-
clude one-threaded, one-population architecture, where convection distribution turns into
convection selection.

11

Figure 9: Representative examples of population dynamics in three genotype distribution
schemes – from top to bottom: Random, Convection intervals (equal width) and Convection
intervals (equal number of genotypes). The vertical axis is fitness, and the horizontal axis
corresponds to migrations. There are 1,000 migrations shown in each chart, and for each
migration, fitness of each of the 3,000 individuals in the master population is depicted as a
dark dot. In all three experiments visualized above, tournament selection of size 5 was used.

12

Acknowledgments

The research presented in the paper received support from Polish National Science Center
(DEC-2013/09/B/ST10/01734).

References

[1] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–462, 2002.

[2] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation, 4(4):361–394, 1996.

[3] David R. Butenhof. Programming with POSIX threads. Addison-Wesley Professional,
1997.

[4] Erick Cantú-Paz. A survey of parallel genetic algorithms. Technical Report 97003,
University of Illinois at Urbana-Champaign, 1997.

[5] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in
evolutionary algorithms: a survey. ACM Computing Surveys (CSUR), 45(3):35, 2013.

[6] Dipankar Dasgupta and Zbigniew Michalewicz. Evolutionary algorithms in engineering
applications. Springer, 2013.

[7] Walter de Back, M. Wiering, and E. de Jong. Red Queen dynamics in a predator-
prey ecosystem. Proceedings of the 8th annual conference on genetic and evolutionary
computation, pages 381–382, 2006. URL: http://igitur-archive.library.uu.nl/

vet/2007-0302-210407/wiering_06_red.pdf.

[8] Antonio González, Fernando Latorre, and Grigorios Magklis. Processor microarchitec-
ture: An implementation perspective. Synthesis Lectures on Computer Architecture.
Morgan & Claypool, 2011.

[9] Intel Corporation. Intel Core2 Quad Processor Q6600 (8M Cache, 2.40 GHz, 1066 MHz
FSB. http://ark.intel.com/products/29765, 2007.

[10] Intel Corporation. Intel Core i5-2500 Processor (6M Cache, up to 3.70 GHz. http:

//ark.intel.com/products/52209, 2011.

[11] Intel Corporation. Intel Xeon Processor E5-2660 (20M Cache, 2.20 GHz, 8.00 GT/s
Intel QPI). http://ark.intel.com/products/64584, 2012.

[12] Intel Corporation. Intel Core i7-4700MQ Processor (6M Cache, up to 3.40 GHz). http:
//ark.intel.com/products/75117, 2013.

[13] Intel Corporation. Intel Core i7-4790 Processor (8M Cache, up to 4.00 GHz). http:

//ark.intel.com/products/80806, 2014.

[14] Wojciech Jaskowski and Maciej Komosinski. The numerical measure of symmetry for
3D stick creatures. Artificial Life Journal, 14(4):425–443, Fall 2008. URL: http://dx.
doi.org/10.1162/artl.2008.14.4.14402, doi:10.1162/artl.2008.14.4.14402.

[15] Jacek Jelonek and Maciej Komosinski. Biologically-inspired visual-motor coordi-
nation model in a navigation problem. In Bogdan Gabrys, Robert Howlett,

13

http://igitur-archive.library.uu.nl/vet/2007-0302-210407/wiering_06_red.pdf
http://igitur-archive.library.uu.nl/vet/2007-0302-210407/wiering_06_red.pdf
http://ark.intel.com/products/29765
http://ark.intel.com/products/52209
http://ark.intel.com/products/52209
http://ark.intel.com/products/64584
http://ark.intel.com/products/75117
http://ark.intel.com/products/75117
http://ark.intel.com/products/80806
http://ark.intel.com/products/80806
http://dx.doi.org/10.1162/artl.2008.14.4.14402
http://dx.doi.org/10.1162/artl.2008.14.4.14402
http://dx.doi.org/10.1162/artl.2008.14.4.14402

and Lakhmi Jain, editors, Knowledge-Based Intelligent Information and Engineer-
ing Systems, volume 4253 of Lecture Notes in Computer Science, pages 341–
348. Springer, Berlin/Heidelberg, 2006. URL: http://www.framsticks.com/files/

common/BiologicallyInspiredVisualMotorCoordinationModel.pdf, doi:10.1007/

11893011_44.

[16] Josh Jones and Terry Soule. Comparing genetic robustness in generational vs. steady
state evolutionary algorithms. In Proceedings of the 8th annual conference on genetic
and evolutionary computation, pages 143–150. ACM, 2006.

[17] D. S. Knysh and V. M. Kureichik. Parallel genetic algorithms: a survey and problem
state of the art. Journal of Computer and Systems Sciences International, 49(4):579–
589, 2010. URL: http://dx.doi.org/10.1134/S1064230710040088, doi:10.1134/

S1064230710040088.

[18] Maciej Komosinski. Applications of a similarity measure in the analysis of populations
of 3D agents. Journal of Computational Science, 2016. URL: http://dx.doi.org/10.
1016/j.jocs.2016.10.004, doi:10.1016/j.jocs.2016.10.004.

[19] Maciej Komosinski and Andrew Adamatzky, editors. Artificial Life Models in Soft-
ware. Springer, London, 2nd edition edition, 2009. URL: http://www.springer.com/
978-1-84882-284-9, doi:10.1007/978-1-84882-285-6.

[20] Maciej Komosinski and Marek Kubiak. Quantitative measure of structural and geometric
similarity of 3D morphologies. Complexity, 16(6):40–52, 2011. URL: http://dx.doi.
org/10.1002/cplx.20367, doi:10.1002/cplx.20367.

[21] Maciej Komosinski and Adam Kups. Time-order error and scalar variance in a compu-
tational model of human timing: simulations and predictions. Computational Cognitive
Science, 1(1):1–24, 2015. URL: http://dx.doi.org/10.1186/s40469-015-0002-0,
doi:10.1186/s40469-015-0002-0.

[22] Maciej Komosinski, Agnieszka Mensfelt, Jaros law Tyszka, and Jan Goleń. Multi-
agent simulation of benthic foraminifera response to annual variability of feeding fluxes.
Journal of Computational Science, 2016. URL: http://dx.doi.org/10.1016/j.jocs.
2016.09.009, doi:10.1016/j.jocs.2016.09.009.

[23] Maciej Komosinski and Adam Rotaru-Varga. Comparison of different geno-
type encodings for simulated 3D agents. Artificial Life Journal, 7(4):395–418,
Fall 2001. URL: http://dx.doi.org/10.1162/106454601317297022, doi:10.1162/

106454601317297022.

[24] Maciej Komosinski and Szymon Ulatowski. Parallel computing in Framsticks.
Research report RA–18/2013, Poznan University of Technology, Institute of
Computing Science, 2013. URL: http://www.framsticks.com/files/common/

ParallelComputingFramsticks.pdf.

[25] Maciej Komosinski and Szymon Ulatowski. Framsticks web site, 2016. http://www.

framsticks.com.

[26] Manuel Lozano, Francisco Herrera, and José Ramón Cano. Replacement strategies
to preserve useful diversity in steady-state genetic algorithms. Information Sciences,
178(23):4421–4433, 2008.

[27] Pete Mandik. Synthetic neuroethology. Metaphilosophy, 33(1&2):11–29, 2002. URL:
http://www.petemandik.com/philosophy/papers/synthneur.pdf.

14

http://www.framsticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationModel.pdf
http://www.framsticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationModel.pdf
http://dx.doi.org/10.1007/11893011_44
http://dx.doi.org/10.1007/11893011_44
http://dx.doi.org/10.1134/S1064230710040088
http://dx.doi.org/10.1134/S1064230710040088
http://dx.doi.org/10.1134/S1064230710040088
http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://dx.doi.org/10.1016/j.jocs.2016.10.004
http://www.springer.com/978-1-84882-284-9
http://www.springer.com/978-1-84882-284-9
http://dx.doi.org/10.1007/978-1-84882-285-6
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1002/cplx.20367
http://dx.doi.org/10.1186/s40469-015-0002-0
http://dx.doi.org/10.1186/s40469-015-0002-0
http://dx.doi.org/10.1016/j.jocs.2016.09.009
http://dx.doi.org/10.1016/j.jocs.2016.09.009
http://dx.doi.org/10.1016/j.jocs.2016.09.009
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1162/106454601317297022
http://dx.doi.org/10.1162/106454601317297022
http://www.framsticks.com/files/common/ParallelComputingFramsticks.pdf
http://www.framsticks.com/files/common/ParallelComputingFramsticks.pdf
http://www.framsticks.com
http://www.framsticks.com
http://www.petemandik.com/philosophy/papers/synthneur.pdf

[28] Pete Mandik. Varieties of representation in evolved and embodied neural networks. Bi-
ology and Philosophy, 18(1):95–130, 2003. URL: http://www.framsticks.com/files/
common/Mandik_RepresentationsInNeuralNetworks.pdf.

[29] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan
Miller, and Michael Upton. Hyper-threading technology architecture and microarchitec-
ture. Intel Technology Journal, 6(1):4–15, 2002.

[30] Microsoft. Process and thread functions: Sleep. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms686298(v=vs.85).aspx, 2016.

[31] Raja Mohamed and P. Raviraj. Biologically inspired design framework for robot in
dynamic environments using Framsticks. International Journal on Bioinformatics &
Biosciences, 1(1):27–35, 2011.

[32] Sergio Nesmachnow, Hctor Cancela, and Enrique Alba. A parallel micro evolutionary
algorithm for heterogeneous computing and grid scheduling. Applied Soft Computing,
12(2):626–639, 2012. URL: http://www.sciencedirect.com/science/article/pii/
S1568494611004248, doi:http://dx.doi.org/10.1016/j.asoc.2011.09.022.

[33] Mohammad R. Nikseresht, Anil Somayaji, and Anil Maheshwari. Customer appease-
ment scheduling. Technical Report TR-10-18, School of Computer Science, Carleton
University, 2010. URL: http://arxiv.org/abs/1012.3452.

[34] J.A. Pyles, J.O. Garcia, D.D. Hoffman, and E.D. Grossman. Visual perception and
neural correlates of novel ‘biological motion’. Vision Research, 47(21):2786–2797,
2007. URL: http://dx.doi.org/10.1016/j.visres.2007.07.017, doi:10.1016/j.

visres.2007.07.017.

[35] J.A. Pyles and E.D. Grossman. Neural adaptation for novel objects during dynamic
articulation. Neuropsychologia, 47(5):1261–1268, 2009.

[36] Herb Sutter. Exceptional C++ Style: 40 New Engineering Puzzles, Programming Prob-
lems, and Solutions. The C++ in-depth series. Addison-Wesley, 2005.

[37] Marco Tomassini. Parallel and distributed evolutionary algorithms: A review. In P. Neit-
taanmki, K. Miettinen, M. Mkel, and J. Periaux, editors, Evolutionary Algorithms in
Engineering and Computer Science. J. Wiley and Sons, 1999.

[38] Frank Vavak and Terence C. Fogarty. A comparative study of steady state and gen-
erational genetic algorithms for use in nonstationary environments. In Evolutionary
Computing, pages 297–304. Springer, 1996.

15

http://www.framsticks.com/files/common/Mandik_RepresentationsInNeuralNetworks.pdf
http://www.framsticks.com/files/common/Mandik_RepresentationsInNeuralNetworks.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686298(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686298(v=vs.85).aspx
http://www.sciencedirect.com/science/article/pii/S1568494611004248
http://www.sciencedirect.com/science/article/pii/S1568494611004248
http://dx.doi.org/http://dx.doi.org/10.1016/j.asoc.2011.09.022
http://arxiv.org/abs/1012.3452
http://dx.doi.org/10.1016/j.visres.2007.07.017
http://dx.doi.org/10.1016/j.visres.2007.07.017
http://dx.doi.org/10.1016/j.visres.2007.07.017

	Introduction
	Multithreading performance
	String implementation: reference counting vs. copying
	Simulation and evolution

	Convection distribution scheme
	Summary and further work

