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Abstract

This thesis investigates the possibility of robots forming species as defined by biology.

This is tested through the use of physics-based 3D simulations in which populations of

robots are subjected to various conditions which have been shown to cause speciation in

nature. Tests include ecological speciation, anagenesis, mutation order, morphological

and non-morphological evolution, and genetic drift. Within the framework of evolution-

ary robotics, it will be shown that robots can evolve reproductive isolation and develop

into species. At the same time, a novel approach and methodology for speciation simula-

tions is also demonstrated. These results will help us better understand the population

mechanics involved in artificial evolution as well as identify a potential tool for evolu-

tionary algorithms.
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Chapter 1

Introduction

In 1835, Darwin arrived at the Galapagos Islands to study as a naturalist. He was cer-

tainly not the first visitor to the island; a small population of birds had beaten him by

roughly 2.3 million years[39]. The now famous Galapagos finches, a staple topic of most

evolutionary textbooks, had immigrated from somewhere in the Americas. Eventually

the birds were able to populate multiple islands in the chain, though the journey between

landmasses was long enough to substantially separate them. Then began the slow evo-

lutionary process of environmental adaptation. Some of the birds evolved larger beaks

were better able to consume the large seeds on their island. Others became adapted to

a different niche, and developed smaller beaks for smaller seeds. The original population

began to diverge as differing groups evolved to exploit differing environmental resources.

Despite their physical separation and dissimilar interests, small-beaked finches and large-

beaked finches did inevitably come in contact and attempt to mate. The product of such

a union, a hybrid offspring, found itself poorly equipped for either food source. Its

mid-sized beak was unable to break large seeds and inefficient at consuming the small

seeds as well[94]. These low-fitness hybrids did not perform well in terms of survival. In

their inability to crossbreed successfully, the large and small-beaked finches had become

separate species. Scientists have observed this same phenomenon of hybrid inviability

through many different mechanisms in many different species; in fact most hybrids have

lower rates of survival than either parent[41].

How might this be relevant to computing and robotics? The field of artificial intel-

ligence has for many years been increasingly adoptive of biologically inspired processes

such as evolution[104], neural networks[78], and even predator-prey relationships[108].
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While much of the research has invested itself in optimizing these techniques, a macro-

perspective has proven fruitful as well. For example, understanding how population

mechanics change group behaviours is critical to the operation of swarm systems[114].

Platforms such as the Symbrion project [4] focus on how entire populations of robots,

rather than individuals, adapt and perform. Small, simpler robots such as these have

been shown to operate rather robustly and evolve together to suit their environment and

task[114]. How then, is the evolutionary path of these robots impacted when presented

with some of the environmental dynamics the Darwinian finches observed?

Robotic swarms are well recognized for their ability to remain functional as a group,

despite failures amongst individuals[98]. This makes them ideal for hazardous environ-

ments, so space exploration has been proposed numerous times [117]. Imagine then, that

a population of evolvable robots is sent to map and explore a distant planet or aster-

oid. Upon their arrival, some of them may find themselves in dissimilar environments.

They will adaptively evolve as groups, optimizing their functionality for their respective

circumstances, just as the finches did. But what will happen if these two divergently

evolved groups come back together? This all leads naturally to the question ‘Can robots

form species’?

The goal of this thesis is to investigate this concept and to attempt to demonstrate

the very first speciation event within a robotic system. This will be accomplished using

the Framsticks simulation software and will further examine the impact of environmental

differences, selection pressures and genetic drift to robotic speciation. Experiments will

also look at the possibility of mutation order speciation, species arising from both mor-

phological and non-morphological evolution, and speciation as it can occur from either

branching events or within a single lineage. The most common method of delineating

species, by reproductive isolation, will be used with consideration also given to more

traditional taxonomic measures.
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Should speciation within robotic populations be possible, a number of intriguing

possibilities present themselves. Currently a number of methods, such as island models,

are used to assist in maintaining diversity within evolutionary robotic systems. Speciation

represents an emergent, self regulating approach for performing the same task. This

allows multiple viable solutions to exist within a single population without requiring

unnecessary barriers. An understanding of how species groupings form may also show a

path to joining these divergent populations, gaining the most from the genetic diversity.

This concept may even apply outside of the field robotics having application in a much

broader study of artificial evolutionary systems.

On the other hand, a speciation event can also be thought of as the amount of

divergence at which a crossover operator fails. This essentially blocks entire groups

within a population from exchanging genetic information slowing evolutionary progress.

Knowledge about the mechanisms that underlie this counter productive situation will

help system designers in avoiding it. Finally, speciation events can be used to trace

important evolutionary changes in robotic development. Existing methods of quantifying

changes with measures such as genetic distance are lacking in context, whereas speciation

denotes a functionally relevant divergence in a population. These events may prove to

be important markers in the overall development and deserve further study.

As a general breakdown, the information is presented as follows: Chapter 2 will

explore the concepts used throughout this thesis, particularly those relating to artificial

evolution, speciation, and evolutionary robotics. Chapter 3 examines the research leading

up to this work, while Chapter 4 discusses how this question has yet to be answered.

Chapter 5 presents the details of the experimental setup and the simulation tool used.

Chapter 6 has the final results and Chapter 7 concludes with a short summary and ideas

for future work.
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Chapter 2

Evolutionary Systems and Speciation

2.1 Evolution

Our world teems with life; it has invaded nearly every corner on this planet. Evolution,

it seems, can find a solution to nearly any problem in time. The basic principles of

evolutionary theory[24][69] have been well documented in innumerable texts, so it does

not serve us to review them again here. For further reading please see [6][95][41]. However

there are many nuances to the process of evolution that are of interest to this work; those

will be briefly discussed.

A common misconception about evolution is that it is progress driven, but nature is

not always so pragmatic. It is much more accurately described as a system of change,

and to that end, not all change creates progress. And while we perceive evolution to

be acting on the living organisms around us, it is often the genes of those organisms

that were impacted first. This leads us to an important distinction, that all organisms

can be considered from the view of their genetics (genotype space) or their physical

bodies (phenotype space). Clearly these two concepts are inextricably linked as it is the

genotype that encodes for the phenotype, but evolution sometimes acts upon them in

very different ways.

Natural selection[24], a term that is often misunderstood as meaning the same thing

as evolution, describes a force that operates largely in phenotype space. It describes

the reproductive benefit attained by higher fitness individuals in a population, and is

therefore governed by the behaviour and success of the phenotype.

This is in contrast to the concept of genetic drift [125], another important feature
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of evolution. When genes are duplicated to be passed on to the next generation, there

inevitably exist copy errors, which are referred to as mutations. They are inherently

random, and to the original point, do not necessarily progress the organism. Many of

these mutations are fitness neutral, so while they do constitute change in genotype space,

they do not create meaningful change in phenotype space [56]. This idea becomes relevant

over long time scales, over which the accumulation of small mutations can amount to a

very large genetic change.

The complex interplay between micro and macro forces on evolution is a recurring

theme in the literature[123][97][81][42]. Some stress the importance of the behaviours of

entire populations and species when studying evolution, while others are more interested

in how the DNA is performing. It is, in fact, still an ongoing debate between scientists

as to which of these two mechanisms plays a larger role in evolution [105].

2.2 Evolution in Computing

Though natural evolution may not have any intention of creating progress, its success

in that scale has not been lost on computer scientists. For several decades, researchers

have been developing methods called Evolutionary Algorithms (EAs)[127] that can be

applied to engineering and computational problems. This is best understood from the

‘micro’ perspective of genotype space. Rather than the chemical DNA used in nature,

EAs apply evolutionary forces to digital DNA.

2.2.1 Different overall approaches

There are many different methods of applying the concept of evolution to a computing

environment; Evolutionary Strategies(ES)[8], Genetic Programming(GP)[61] and Genetic

Algorithms(GA)[45] are some of the more popular classical designs. These will be cited for

the purpose of providing examples of the differing techniques, but an in-depth exploration
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of their differences will not be made in this thesis. It is sufficient to say that no particular

system is universally applicable, nor do all EAs conform to these specific procedural

templates[127]. More precise definitions and comparisons of GP, GA and ES as well as

discussions about appropriate uses can be found in [127][29].

Generally an EA works like a search algorithm, testing many different individual

solutions in an attempt to find the best one. Its search space is often called a ’fitness

landscape’ and might be visualized as in Figure 2.1 for demonstration purposes. Every

different sequence of digital DNA (or genotype) will map to a point on this surface

showing how well it performed. One can imagine that very similar solutions may perform

in similar ways, which is crucial for the efficient operation of an EA. By determining

which genotypes have performed well, it can focus its search in the areas with the most

potential. In Figure 2.1a the fitness landscape is smooth, and the EA may behave like a

simple gradient accent algorithm. If, however, the landscape appears more rugged as in

Figure 2.1b, the search will be more difficult because neighbouring solutions will perform

less consistently. In order to effectively search a landscape, it is usually required that

various parameters of an EA be tailored to that specific problem.

For example, if the purpose of the EA is to optimize an existing system, then imple-

menting an ES may work well. This only evolves certain variables of a program while

the overall structure remains constant. In this case it might make sense that the geno-

type simply consist of a series of real numbers. Alternatively, the entire program itself

may be subjected to evolution. Just as DNA ‘encodes’ for organic bodies in nature, the

digital genotype encodes for the digital phenotype, be it a computer program[61], neural

network[78], or even an entire robot[104]. This can take the form of a bit string, integers,

characters, or any data structure that is meaningful to the objective [127].
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(a) Smooth Landscape (b) Rugged Landscape

Figure 2.1: Fitness Landscapes

2.2.2 Fitness and Selection

Common, but not universal to all EAs, is the use of a fitness function. This formally

quantifies the performance of an individual - a measure of how well it is doing in any

particular environment. The ability of a fitness function to give clear directions to an

EA largely defines how effectively it will progress. This information is usually used

to determine which solutions should be allowed to progress forward, a process usually

referred to as ‘selection’. It is another important parameter of an EA and can greatly

affect the outcome.

One method, as is often used in ES[8], is to only keep those individuals that have

the best fitness in the population. This means the entire next generation may be de-

rived from a single individual or some small percentage of the population. If the next

generation does not differ sufficiently from the previous one, it may not effectively search

the solution space. In this case, the EA will likely become trapped in a local optimum

[4]. Not all systems of choosing individuals are deterministic, as many are stochastic

in nature [127]. Selection can be made probabilistically based on their fitness, or even

randomly. Whatever the case, it is important that the selection process ensure overall

evolutionary progress while avoiding premature convergence. Some simulations do not
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explicitly calculate fitness and allow populations to mate/multiply to pass on their ge-

netic information. This is common in Artificial Life (AL) systems which often rely on

energy measures and death to control the population [7]. Once the selection has been

made, EA must pass the current solution(s) from one generation to the next.

2.2.3 Control

A system that lacks a fitness function will usually lack centralized control as well, another

important variation in artificial evolution. Centralization/decentralization is not so much

a parameter of artificial evolution as it is a description of how the parameters operate

together. The difference lies in where the evolutionary algorithm is located or processed;

in a central hub or in a distributed fashion (Figure 2.2a). Many evolutionary systems are

run on a single computer so the non-distributed method tends to be the norm, though

both have advantages. Centralized evolution gives the experiment designer great control

over the various parameters such as selection and can also format the system into discrete

generations. This is necessary for some of the examples in the previous section, such as

generating the next generation from a single genotype. Decentralized control, on the other

hand, represents how nature operates and is capable of generating unique and unforeseen

solutions (Figure 2.2b). This also promises better scalability and is less compromised by

issues of locality.

2.2.4 Passing on Genes

The method of passing on genetic information from one generation to the next is another

critical parameter. The simplest method is to transmit the data directly; this could be

thought of as cloning or copying. However this cannot be used every time or there would

be no variation between generations and therefore no evolution could occur. Instead, a

number of different genetic operators can be used to act upon a selected individual to
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(a) Centralized Evolution (b) Decentralized Evolution

Figure 2.2: Controlling Evolution

create variances in the data. The two most common methods are mutation and crossover.

2.2.5 Crossover

Crossover, also called recombination, finds its inspiration in the sharing of genes through

breeding as is found in nature. A simple example might include two parent genomes that

have been selected from the population to pass on part of their genetic information. A

segment of each genome is copied and when the segments are combined, they form a new

‘offspring’ genome (see Figure 2.3). In this case only one new genotype is created, but

commonly there are two offspring generated [119]. This is done in the hopes that the new

genome will show progress by outperforming its parents. For many years, researchers of

EAs have debated over how, and in what situations, crossover should be applied [50]. It

is usually considered essential in GAs and GPs but less so in EP and ESs [107]. It has

also been argued that the operation can be damaging to genetic information and may do

more harm than good. This would be particularly true if the algorithm ignores structure

inherent in the data when choosing where to ‘cut’ the genome[68]. So, depending on the

application, some programs will make random cuts while others are more delicate when

splicing the data. Another parameter of a recombination operation is the number of cuts
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made to the parents’ genomes before reassembly. Theoretically this is only restricted by

the length of the genetic information though it is traditionally limited to one or two cuts

[107]. EAs are also typically either asexual or sexual systems, by having one parent or

two parents, respectively, pass genetic information to offspring genomes. These are not

fixed values and any number of parents can be used in a crossover operation, though the

use of more than two is not as common [28].

Figure 2.3: Crossover operation

2.2.6 Mutation

Mutation operations are widely used in EAs of all forms when transmitting genetic in-

formation between generations. It differs from crossover in that it can create new genes

and can add fresh genetic material to the genepool [29], as opposed to only drawing from

the existing genetic data. For simplicity, consider the binary genome described by Figure

2.4. The mutation operation selects random positions and changes them, in this case by

flipping the bit. The method of selection is often based on some probability that any

given position will be mutated. Again the hope is that the new genome, though very

similar to the parent genome, may have a higher fitness. Reversing bit values works well

for binary systems, but as the complexity of genome data increases, the complexity of
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the mutation operation often needs to match as well.

Figure 2.4: Mutation operation

The rate at which mutations occur also has a great impact on evolutionary progress.In

humans mutations occur at a rate of only 10-10 [6] (per base pair per replication). This

is very slow but a necessary consequence of avoiding high variation mutant genotypes.

For organisms in the real world, producing or raising low fitness offpsring comes at a

great cost. Computers on the other hand can delete poor offspring without moral con-

sequence, so a higher mutation rate is reasonable. The tradeoff between generating low

variation and high variation genotypes is critical to the selection of genetic operators.

These opposing values are often referred to as Exploitation and Exploration respectively.

Returning to the fitness landscape concept, in Figure 2.5 three different genotypes have

been mapped to their respective points. A lower mutation rate will likely yield lower

variation between generations, an example of exploitation. This allows an EA to ‘ex-

ploit’ the potential of current solutions by more effectively searching the nearby fitness

landscape. In contrast, exploration through higher variation will search more distant

genotypes looking for increased fitness. Both are important to the overall success of an

EA.
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Figure 2.5: Exploration vs Exploitation in EAs
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2.3 Evolutionary Robotics

At the most basic level Evolutionary Robotics (ER) uses the methods of Artificial Evo-

lution, such as Evolutionary Algorithms(EA), and applies them to robots. Robots are,

in the simplest sense, defined as “a machine capable of carrying out a complex series

of actions automatically” [82]. This encompasses many different types of devices from

industrial arms such as Figure 5.2a to the androids of science fiction novels. The majority

of the robots considered in this work are Autonomous Robots, i.e. “robots that move

freely and without direct human supervision”[119]. The general goal of ER is to explore

ways for these robots to develop and adapt without the help or guidance of humans -

in a word, to evolve. Broadly, this encompasses every aspect from controller design and

social structure to the physical design of the robot itself. It also teaches us about the

mechanics of evolution and biology, giving us insight into a natural phenomenon that

occurs at a rate too slow to observe in the real world.

The earliest experiments into genetic algorithms did not use robotic systems, so why

has ER become so popular? Robots provide an interesting platform on which to test

development techniques for two reasons. Robots with a neural net controller use a sen-

sorimotor loop to control their behaviour. This describes the cycle of information as the

controller instructs actuators, actuators impact the environment and the environment is

perceived back through the controller. This setup can draw on very simple solutions to

solve for more complex problems[36][119]. Robots also present an opportunity to work

with a complete system [108], one that can actually be used and tested outside of a

computer if necessary.

Akin to many other ER experiments, this thesis will make use of multiple robots

operating in the same space [122][55][74]. Robotics literature has long recognized the

value of using many simpler robots over an individual complex robot in performing certain
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tasks [15][84]. For example, multi-robot systems are more fault-tolerant - they continue

to function even if some of the robots are damaged or destroyed. Populations of robots

can also be comprised of simpler and more cost-effective robots, rather than a single

expensive one. Individual robots may also lack the scalability of multi-robotic systems-

though one single complex robot may ably perform a task, adding more complex robots

may not improve performance. Finally, they also allow for parallel evaluation as discussed

in Section 2.3.2.

This field of ER began as an attempt to develop controllers without undue interfer-

ence or influence of the programmers. The hope was that this would allow robots to

generate unique solutions to problems that humans might not have considered. These

experiments generally attempted to optimize the robotic controller towards a specific

goal or behaviour. Many studies have noted the ability for evolutionary algorithms to

find and exploit niche solutions to general robotics problems ranging from locomotion

[66][12]to vision systems [5] [91].

2.3.1 Current uses of ER

This area of study has developed with a much more robust and complicated set of prob-

lems. These could be summarized as generally belonging to three areas of focus: op-

timization, emergence, and studying life through ER. Much of the foundational work

in ER focused on demonstrating that functional controllers could be generated without

human guidance [74][62]. Many hoped that this would eventually save time and effort on

the part of programmers [5][62][93]. It might also allow robots to dynamically adapt to

changing environments, or simplify the programming in multi-robot systems[60].

Those researchers aimed to create specific behaviours in robots using ER, while others

study how the evolutionary process reacts to the rules and environment it is presented

with. Emergent and unexpected behaviours are a common and fascinating aspect of the
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work. In several ways, ER could be compared to a form of developmental psychology

for robots; rather than creating robot minds, we are allowing them be created, while

trying to understand how to best work with them. Studies that focus on this are often

of interest to the AL community as well. For example, ER experiments of predator-prey

interactions such as [108][37] may teach us about similar systems in nature.

2.3.2 Parameters of ER

The experiments performed in ER are varied, but generally follow the same pattern.

An initial population is formed, each with a genome. These genomes can be used to

encode only a portion of the robot such as the controller, or potentially the entire robot.

These robots begin to interact with their environment in such a way so as to allow the

researcher to grade them based on a fitness function. Individuals are then selected from

the population based on their fitness and new genomes are generated from theirs. In

the case where the new genomes are generated from a single parent genome (asexual)

some form of genomic mutation is usually performed. If two parents contribute to the

new robot (sexual), a crossover operation is also used to join the genomes. These new

genomes define the next generation. The experiment can run for a specific number of

steps, or until a certain fitness is achieved, or can be run indefinitely.

There are a number of variables and methods that can be manipulated to change the

behaviour of an evolutionary robotics system. We will explore those most relevant to

this thesis, specifically controller choice, morphology, initialization, place of execution,

use the simulations and distal/proximal considerations. For a more complete overview

of other variations in ER see [108][119][106].

Controller

The controller, or the brains of the robot, can be implemented in a number of different

ways. Researchers have tried tree-structure programming [65][62] and unstructured chips
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are discussed by [106] and implemented by [38][116] to name a few, but overwhelmingly,

they have used neural networks [106, 122, 35, 90, 124]. Researchers have discovered that

robots with neural network controllers are more insensitive to noise [106]making them

more robust. Neural networks are also capable of ontogenetic learning [78], that is, they

can develop behaviours and functionality that they did not directly inherit.

Morphology

A common practice in ER experiments, particularly in early studies, was to begin with

a functional robot body but a non-functional controller. Later, research progressed and

began to incorporate certain physical features on the robot, such as the placement and

design of the sensors [85][103] along with the controller. Other experiments were able

to demonstrate that the co-evolution of the brain and body resulted in operational im-

provements especially as task complexity increased [11]. However, the physical evolution

of robots need not be constrained to the location and function of its sensors. “Intelli-

gent behaviours arise out of the coupled dynamics of mind body and environment. It

follows that the complexity of the controller and morph must match the complexity of

the environment”[3]. With this in mind, some researchers have taken morphological de-

velopment a step further and have allowed the entire structure of the robot to be slowly

altered [70][109]. Much of this work can be likened to Karl Sims early work[104] develop-

ing physical creatures with a focus on locomotion. The co-evolution of body and brain

“in lockstep” [106] has exciting potential, but the evaluation of results in real robots is

challenging. Lipson and Pollack [66] famously demonstrated how morphologically evolved

robots could be exported to the real world. The robotic bodies that were designed by the

experiment were exported to a rapid prototyping machine that manufactured them out

of plastic. Motors and a microcontroller programmed with the evolved neural network

we connected, and the robots were shown to function. While this did effectively demon-
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strate the viability of evolved robot bodies, it was also very expensive (using today’s

technology). Once again the ‘cost factor’ showed that real world trials, while possible,

were mostly impractical.

Initialization

The researcher can also manipulate the initial setup of the experiment to achieve different

results. For example, as mentioned earlier, most experiments begin with a functional

robot body but a non-functional controller [11][60][35][75][103]. However, initializing the

controller without any inherent functionality or structure may lead to the bootstrap

problem [119]. This describes the well established issue in EAs wherein the minimal

solution is too complex to be generated without assistance. Also, if the controller is

generated randomly, it might result in destructive behaviours, whereas a predesigned

initial controller might restrict or at least influence the evolutionary development. The

design of the body need not be fixed either, and this carries with it some of the same

decisions. The robot might begin as a functional creature [85][4], or both body and mind

may be evolved from scratch [66].

Place of execution

Much of the earlier work in ER used a centralized computer to perform the evolutionary

algorithm [35][72][120]. However this is not the only option; the EA can also be executed

in a distributed fashion. This subset of experiments in ER has arisen, rather pragmati-

cally, from early work described by Watson et al. In [33] it is argued that under certain

circumstances, a real population of robots might not have the ability to evolve using

a centralized network. Under those circumstances, it is unrealistic to require that all

information, including the fitness and genotype of every robot, be run through a single

computer. If, for example, the robots were spread across a large area and communication

was localized, a central computer would be ineffective.
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This technique, called Embodied Evolution (EE) allows the robots to be freed from

the restraints of a centralized system. This methodology promises both scalability and

parallelism, but more inspiringly, simulates greater functional independence in its robots.

It is also argued that this is more similar when compared to a natural evolutionary system

[122] [108]. It is not necessarily more efficient though, as a centralized system may be

able to better calculate a path through solution space.

Real vs Simulated

Robotics tends to be an application-focused area of study - if results cannot be applied to

real robots, then researchers may become disinterested. Taking this pragmatism into ac-

count, several important developments have impacted the methodologies of ER. Almost

inevitable in an ER paper is a discussion regarding real versus simulated experiments.

This topic has been reviewed many times, so only a brief overview of the points will be

made here. It is often cited that “the world is its own best model”[14], summing up

the basic criticism of simulations - that they are not a completely accurate representa-

tion of reality. There is a fidelity to the real world which cannot be recreated, or it is

at least intractable. The ”reality gap” [49] describes an issue where robots that learn

in a simulation may not have sufficiently accurate sensory data to develop meaningful

behaviours.

Despite these very important points, the merits of simulation have persuaded many

researchers. Primarily, the argument in favor of simulation is that it is far less expensive

in both time and money. Many papers propose experiments that require only a few hours

using simulators but estimate that they would take years to complete in the real world

[76][13][83].

Using real robots also carries a host of problems. Simple wear and tear has been

reported to require maintenance [122], and physical damage is commonly cited as a
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reason to not use them [121] [120][106] especially in earlier stages. The absence of any

requirement to supply spare parts or mechanically maintain the robots makes simulated

work very appealing. Simulation testing also allows researchers to test many different

variations quickly without undertaking time-consuming and repetitive setup procedures.

Experiments that study the behaviors of robotic populations, such as this one, tend to

prefer large numbers of agents, which further increases the costs. Other researchers have

used a single robot and tested the genomes in serial order [36] but this deprives the

robots of any interaction with each other. In an effort to assuage the concerns of other

researchers, [65][74][120] describe running the majority of the experiments in simulation,

and then at the end, porting the controller out to a real robot as a proof of concept.

In a boon for those working in simulation [49] effectively demonstrated that the use

of artificial noise, applied to the sensorimotor loop, could negate some of the reality gap.

Prior to this, researchers had pointed out the unrealistic feedback received by simulated

sensors- it was always perfect data. [65][72] attempted to use actual sensor data for

simulated training, but this proved difficult and painstaking. [76] later proved that

excessive noise could also harm the evolution, but overall the addition of noise helped

evolve more robust controllers. This study might benefit from the use of real world

robots, unfortunately morphological evolution is prohibitively expensive using current

technology.

Distal / Proximal

Another important consideration in judging an experiment’s realism/portability to the

real world is the information used in the fitness function. [77] refers to this as dis-

tal/proximal and [36] as external/internal. These authors argue that the experiment

should consider what information is likely to be available in a real world trial. For ex-

ample the use of a human to identify and select against pathological behaviors (such
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as becoming stuck [74]), that the robot itself is not able to identify. Other information

that is easily accessible in a simulation is difficult or expensive to derive for real robots

such as their exact location. Even the velocity of the robot at any given point might be

difficult to calculate with any precision. This largely constrains the variables that can be

used in a fitness function. A fitness function which has elements that are difficult for real

robots to independently calculate such as [53][74] is ‘distal’ or ‘external’ and is perhaps

less meaningful for an ER experiment. If the test results are meant to be applicable to

robot development, it is important to maintain a proximal approach such as [122].
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2.4 The Formation of Species

In biology, evolution can be seen as creating bio-diversity. Organisms are constantly

adapting and changing to meet the needs of ever varying environments. The basic unit

of measurement [9] [1], indeed the very cause of this diversity, is denoted by the term

species[42].

2.4.1 The Macro View of Speciation

To begin a discussion on speciation, it makes sense to first look at what a species is. The

most common definition [6] is “groups of actually or potentially interbreeding popula-

tions” [69]. So in order for two organisms to belong to the same species, they must be

capable of producing viable offspring (this is explored more thoroughly in Section 2.6).

Speciation, quite simply, is the process by which a species is formed. The term ‘specia-

tion event’ is rather misleading, as only on a geological time scale would one consider it

to be an ‘event’. In reality, speciation is believed to occur gradually over thousands or

even tens of thousands of generations [48] and can take millions of years [95].

Classical Scenario

The classical scenario [39] of speciation follows a hypothetical population that is split

geographically, forming two different groups. This could be the result of a mountain

range forming through the middle of their habitat range, or perhaps by chance, they may

populate a distant island. It can then be imagined that the two islands they inhabit differ

ecologically in some way. The predators may be different, or the available food sources

may not be the same. Perhaps a larger body size is beneficial in one environment but

detrimental in the other. This puts a unique evolutionary pressure on either population,

forcing them to evolve and adapt along potentially divergent paths. If enough time passes

and enough of these differences accumulate, they may come to behave or look dissimilar.
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These changes and adaptations could prevent them from breeding with each other, or a

hybrid offspring born from a parent of each group would be inviable.

It has been over 150 years since Darwin first presented this model for the formation of

a new species and we have only recently begun to understand just how accurate it is [101].

Darwin’s basic premise, that selection towards adaptation drives evolution and therefore

speciation, has been contended with for many years. Indeed, over a hundred mathemat-

ical models have been used to address this very question [123], and to understand what

other forces might be shaping evolution. For some time, there was some agreement that

it was theoretically possible for selection to be the driver behind speciation, but that it

might be rare. However, recent studies and a refinement of our models have changed this

opinion, and it is currently held that this classical version of speciation occurs frequently

[95][101]. This is sometimes referred to as Ecological Speciation to clarify that it depends

on factors in the surrounding environment to create change[80].

Figure 2.6: Speciation: The Development of New Species0

Barriers to Gene Flow

A critical concept to speciation is that of ‘Isolation Mechanisms’ that exist between

groups. The simplest example was the one used in the Classic Scenario - a geographic

barrier. A mountain range or large body of water prevents the separated groups from

0For demonstration purposes only - does not describe a specific speciation event
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breeding, effectively isolating them from one another. Isolation mechanisms can take

many different forms though, and not all are so direct. For example, two species may

have different mating seasons so they will never attempt to breed; this is a form of be-

havioural isolation. Differences in body size or sexual organs that prevent crossbreeding

are an example of mechanical isolation. Any one of these may not be enough to com-

pletely stop gene flow between the two populations (e.g. the geographic barrier may only

partially block transit between ecosystems). So it is often the case that a combination

of two or more of these isolation mechanisms act on a population during the course of

speciation [105]. In the end, the defining element in speciation is the development of some

Reproductive Isolation. This describes any set of isolating mechanisms that combine to

prevent viable breeding.

The isolating mechanisms can interrupt various processes of mating in order to prevent

breeding. In the examples of behavioural and mechanical isolation, both act to prevent

mating from happening in the first place. In various forms of genetic isolation (discussed

in Section 2.4.2), mating occurs but does not generate an embryo. These cases are

referred to as pre-zygotic isolation - when no offspring is born. Post-zygotic isolation

is the case where two species can produce ‘Hybrid’ offspring but they are considered

inviable for other reasons. Typically they are either infertile, or the offspring may be

deformed and/or otherwise deemed ‘low-fitness’ [41].

Completeness

Speciation is often thought of as a binary event, as either having occurred or not having

occurred. This simplistic view ignores the continuous nature of speciation - it is a very

gradual process and has varying degrees of completeness [80]. The fact that the process

of speciation has begun is no guarantee that the two species will remain stable and

separate. Even though it has been initiated, it may still require additional isolating
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mechanisms to progress, or possibly revert back to a homogeneous population. Figure

2.7 describes the overall pattern and stages wherein mid-speciation may be identified by

ongoing hybridization and similar genomes.

Figure 2.7: Speciation continuum [80]

Reinforcement

It has also been shown that speciation can be perpetuated through mate selection pref-

erences. Consider a case of ecological speciation where only post-zygotic isolation has

become fixed, and assume that two populations have diverged significantly enough so as

to only produce low-fitness hybrids. Intuitively, these hybrids are less likely to survive to

maturity and are therefore less likely to breed. Even those that do reach maturity may

not be selected for mating by partners, further decreasing the chances of a hybrid genome

passing to the next generation. Selection against hybridization, a form of ‘reinforcement’,

creates an extra barrier to gene flow between the two populations and is thought to play

an important role in the rate of speciation. As an isolation mechanism, mate selection
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occurs before breeding and is therefore pre-zygotic. This illustrates the manner in which

post-zygotic isolation such as ecological adaptation can lead to pre-zygotic isolation as

well [123].

Alternative Theories

Few evolutionary biology textbooks are complete without a discussion of alternative

models for speciation. The definition chosen for this thesis is, again, the most influential

but not the only one. Defining species groups based on viable offspring is called the

Biological Species Concept (BSC). The BSC does not address all forms of speciation and

so, a number of competing theories, no less that 22 [52], have sprung up. Most other

speciation routes are not relevant to this work; however there are two that may prove

to be of interest. The BSC requires that members of two populations be able to, at

the very least, attempt to mate. By definition this only applies to sexual reproduction

- asexual reproduction requires only one individual. Intuitively, this also requires that

both individuals be alive so it cannot be used to differentiate between species that are

extinct. The classical scenario involves a single population that splits and forms two

different species, neither of which becomes extinct. This process can be more generally

referred to as ‘cladogenesis’ and is the focus of this thesis. ‘Anagenesis’ on the other hand

describes evolutionary change within a single lineage - it does not involve a branching

of species[22]. It occurs slowly within one species as it accumulates enough change and

gradually becomes a new species. It is in this case that the original species has typically

gone extinct in which case it is not possible for the BSC to be applied. In this situation,

scientists have typically made use of a taxonomic systems such as the Morphological

Species Concept(MSC), or its more current version the Phenetic concept [41]. This is

how one would imagine species were classified before the concept of evolution had been

proposed - by their physiological traits. The basic definition is“assemblages of individuals
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with morphological features in common and separable from other such assemblages”[47].

While this may be more intuitive it is also considered to be more subjective as a method

of delineation[39]. In the case of Anagenesis, the division made between an ancestral

species and a new species is often somewhat arbitrary. The solutions to these problems

are numerous and not well agreed upon; for more information see [6][41].

2.4.2 The Micro View of Speciation

A very different way of looking at how speciation works is to take the perspective of

microbiology and understand what role it plays. This largely focuses on the underlying

genetics and how it both affects and is affected by speciation. These theories are not

competitive with the concepts found in ecology; it is only through an understanding of

both that we can see a clear picture of how speciation works.

Depending on who one talks to, it might be suggested that we understand the micro

view best [123] or that we still know very little about it [101]. Regardless, the volume

of information we do have is beyond the scope of this work; for a recent survey of the

literature, see [81]. Our short summary begins with the Dobzhansky-Muller theory of

genetic incompatibility [25]. Consider again the classical model in which two popula-

tions begin the process of divergent evolution as in Figure 2.8. In the second step both

populations have seen an advantageous mutation arise in their respective gene pools.

Gene A mutated into a in one environment and B mutated into b in the other. With

these new genes giving some adaptive advantage, they eventually become fixed in the

population. The crux of the Dobzhansky-Muller model shows that while the a and b

genes are beneficial on their own, they are incompatible when joined together. Therefore

a hybrid having a genome of ab will see some phenotypic disadvantage, possibly sterility

or generally lowered fitness.

Therefore, the post-zygotic isolation and hybrid inviability can actually be the result
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Figure 2.8: The Dobzhansky-Muller Model [126]

of genetic incompatibility. But not all isolating barriers are considered to be genetically

derived, for example, behavioural isolation may not stem from a Dobzhansky-Muller

incompatibility [47]. Additionally, morphological differences may point to genetic differ-

ences, but there is no guarantee that they will translate into reproductive isolation. This

has led researchers to look for ‘Speciation Genes’ - areas in the genome “that reduce

hybrid fitness”[81]. Many experiments are ongoing, and the results are contentious, but

science is slowly unraveling this puzzle [126].
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Chapter 3

Current Research and Other Systems

This chapter outlines some of the research and experiments that have led up to the

work performed in this thesis. First, will be a summary of various evolutionary robotics

systems, both physical and simulated. Then a look at some of the research that has been

done on speciation from the biology and ecology perspectives.

3.1 Evolutionary Robotics

Figure 3.1: Khepera robots [51]

The Khepera series of robots (see Figure 3.1) are an excellent example of a popular

platform for ER experiments and have been used for over a decade[36]. They provide an

array of IR and ultrasonic sensors and can be upgraded with vision or radio modules.

Some of these experiments trained the robots to perform non-trivial behaviours such

as box-pushing [65] or obstacle avoidance [72] [88] in order to test various optimization

techniques. They have also been used to test predator/prey scenarios [35][124] for both

Artificial Life research as well as to learn about co-evolutionary systems. Unfortunately

the Khepera robots are relatively expensive so some researchers do not use the actual
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robots for testing. Webots, as well as other software tools such as Matlab [51][111], can be

used to simulate the khepera robot to save time[93]. Some experiments are run completely

in simulation [124][88], while others argue that a combination of both simulated and real

Khepera robots is best [72].

Another physical robotic system used in ER is the S-Bot. This is notably different

from the Khepera in the addition of a gripper device that allows the robots to physically

attach themselves to each other to and perform functions as one large ‘Swarm-bot’. The

system is designed to explore the dynamics and potential benefits of swarm systems.

While some still use it for testing evolutionary optimization techniques [18], it is well

suited for evolving biologically inspired multi robot behaviours such as aggregation [113],

coordination [114], and signaling [115]. Again evolution in a physical system is slow, and

some experiments opt to simulate the S-bot [26].

Figure 3.2: Symbrion robots [32]

The Symbrion and Replicator [55] projects provide an exciting robotics platform, that

unlike Khepera and S-bots, is both open hardware and open software. It is a modular

system (see Figure 3.2) with many small independent robots capable of forming larger
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coordinated bodies. In this way the Symbrion conglomerate robot is able to evolve

morphologically - a change in the genome of the small robots can change how they

assemble and therefore change the shape of the overall structure. This is similar to

other modular robotic systems such as Polybot ?? and M-TRAN?? though some are

programmed by a human rather than encoded by a genome. A simulation tool can be

used for Symbrion experiments to shorten the time required for complex evolution. The

system has been used to perform Artificial Life experiments such as a test into the role

of sexuality in robot populations [4], but is also concerned with complex locomotion

behaviors [54].

Expanding upon the early work of Karl Sims [104], several more simulation-only

platforms have been developed. Morphids [90], is morphological evolutionary system and

has been used in testing vision systems [91]. Bongard’s system [12] tested the value of

behaviour chaining by evolving robots capable of both locomotion and object retrieval

[10]. A number of other similar software tools are also available, for a short survey

see [109]. All of these are able to evolve both the morphology and the controller of

an embodied agent. By and large, any of these systems would likely be capable of

demonstrating speciation as it relates to this thesis.
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3.2 Speciation

The study of speciation modelling is dominated by mathematical abstractions- attempts

to formalize Darwin’s theories. Over 100 of these have been developed in the last century

alone [123] and they continue on today. Traditional models have focused on the genetics

in a sort of bottom-up approach often catagorized as Population Genetics. With a view to

the ‘micro’ forces, these models usually ignore many macro forces in ecological details and

interactions [123]. This is in contrast to a relatively new and popular modelling technique

called Adaptive Dynamics [44]. This attempts to take a more balanced approach by

modelling ecological forces as well, although its treatment of genetic processes may be

too simplistic [123].

On the other hand, there seems to have been a recent surge of studies modelling

ecological speciation which is the focus of this thesis as well. Some examples include

[112] which looks at how to identify early stages of speciation from divergent natural

selection. [123][63] both examine the interplay between natural and sexual selection in

speciation while [79] and [100] analyze how mutation-order speciation can occur when

the two populations are subjected to similar selection pressures. The topics vary greatly

however a quick review of this work does point to one trend that is worth noting - a

widespread use of the Biological Species Concept. Other simulations study alternative

paths for speciation such as sympatry [34] [67] or ring species [2]. Like any study involving

models there is some inevitable discussion about underlying assumptions and overall

accuracy - for more information on this topic see [123].

A number of game simulators have also become available that allow an exploration of

evolutionary development. ’Spore’ [30] allows users to manually guide the development

of an individual organism thereby generating unique and novel creatures. Simlife, also

developed by Maxis, takes a broader approach and simulates an entire ecosystem with
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the user manipulating the genetic information of populations in order to effect change.

Though not strictly about speciation, these simulators provide an entertaining way to

investigate how evolution works.

Beyond simulations, speciation is a topic of intense study in the lab as well, with the

overall number of citations increasing exponentially [105]. Much of this effort is directed

at understanding the genetics behind speciation and searching for speciation genes, often

in reference to a specific organism. A blending of these two approaches is the application

of mathematical models to systems that are already well understood in nature.
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Chapter 4

Speciation in Robotics

4.1 Why speciation should be applied to robots

As the field of evolutionary robotics continues to grow and solve increasingly complex

problems, the robots and their controllers will also grow in complexity. It seems entirely

plausible that a large enough population may begin to diverge through evolution. This

could happen for any number of reasons: Perhaps the robots discover multiple solutions

to a single problem in such a way that both genotypes are maintained in the population.

Or if locality of communication creates geographically distinct populations they may

naturally take different evolutionary paths. If the populations should diverge significantly

enough it is possible they may begin to display characteristics and behaviors that biology

would refer to as speciation. More specifically, one group of robots may become so

different that they are no longer able to breed with another group. While it has not been

necessary for this emerging field to create a system of categorization, biology’s continued

interest in speciation may point to future research in ER. Consider that “there is a

general consensus among biologists that species are real and important units of biological

diversity” [9].Identifying and classifying the occurance of speciation is ultimately the

first step in understanding its implications. On one hand, speciation could be viewed

as the systematic failure of the crossover operation - something to be avoided. In other

circumstances, it may prove valuable as a self-regulating diversity preservation technique

or a method for multiple solutions to develop in parallel much as they do in island models.
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4.1.1 How others have not addressed this

Many works have demonstrated speciation in artificial simulations, but none in a manner

that describes a robotic system. To a large extent this could be attributed to the lack of

simulations performed in 3D, and only a handful having been performed in a physics based

2D setup. This is integral to robotics as a field concerned with the study of physically

embodied agents. To avoid unnecessary repetition, the more in-depth discussion of the

various non-embodied simulations is made in the next section (4.2).

The work performed by Earon [27] was very close to this study in terms of goals

and approach. His interest lay in more complex genetic structures that included protein

production and cell development. While much of the background research came from the

ER community, the project looked at multi cellular organisms in 2D rather than robots.

So speciation simulations do not utilize robotics, and similarly, robotics experiments

do not usually focus on speciation events. For those using a centralized evolutionary

algorithm, it is less likely that speciation would even occur as the system may explic-

itly/implicitly select against divergent populations. However some researchers have dis-

covered the developmental value of species in their evolutionary systems and have created

it artificially [89] [23]. One of these ‘speciation’ techniques, also known as fitness sharing

and diversity preservation, seeks to discourage an evolving population of robots/code

from remaining too similar or converging too early [19]. By penalizing individuals for

having genomes that are too similar, in the fitness function for instance, diversity in a

population can be maintained. The similarity measurement is often genotype distance,

but phenotype characteristics such as behavior can also be used [31]. Other researchers

simply keep the two populations apart, never attempting to inter-breed them [92] [16].

This demonstrates a practical use in evolving using species, but is not technically speci-

ation. The division between the species is simply maintained through the fitness sharing

algorithm to promote diversity. However the organisms are not actually incapable of
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producing offspring- they are simply prevented from doing so. A demonstration that

robots can naturally form into species groups has yet to be made.

4.2 Phenotype testing for speciation simulations

While the focus of this thesis is to demonstrate speciation in robotics, it also sheds

light on a largely overlooked technique for performing speciation simulations. The actual

process of creating a new species as it occurs in nature is long, so long that we are

unable to observe it [64]. Much of our knowledge has come from the fossil record which

is incomplete [17][47], and the data we’ve been collecting during the limited time earth

has had scientists. To better understand the mechanisms of speciation we have turned

much of our attention to simulations. Whether statistical or physical, these simulations

can help us watch the process of creating bio-diversity.

Many of these studies have focused on demonstrating that speciation can happen in

different ways. The mechanics of these events are largely ignored in favor of demonstrat-

ing the statistical plausibility of a theory - they don’t test the phenotypes in a real world

environment. Instead they resort to much simpler methods to groups organisms rather

than according to reproductive isolation.

In [99] the experiment deals with the evolution of strings, but wrapped inside a

cellular automata approach. They define two genotypes will ‘belong to the same species

if they differ in less than Km genes’. This amounts to using a simple Hamming Distance

measure to delineate the species. The use of a Hamming calculation further requires that

the strings all be of the same length - The genotypes cannot change size.

In [43] a numerical simulation again uses the variable ‘K’ to define an arbitrary phy-

logenetic line. The authors note at the end the importance this K factor has both on the

number of species and the rate at which species turnover, and show it to be 1√
k
.



36

[71] has a slightly different approach, although the experiment is never actually per-

formed. Rather than calculating the difference across the entire genome, there is a specific

area (or variable) that is checked. If the variables between two agents do not meet an

arbitrary similarity measure, then the agents are defined as different species.

The treatment of speciation as a discrete process with clearly defined boundaries

between the species is erroneous. This is especially true early in the speciation event

when differentiating between species is much more difficult [118]. In more formal terms

a species is a ‘fuzzy set’ [1]. In order to accurately model a species this should be

considered. These algorithmic shortcuts are unfortunately necessary when dealing with

certain isolating barriers. For instance, gene incompatibility leading to hybrid sterility

is not even fully understood and is likely to prove intractable once it is. Attempting to

model this is unfeasible. Other elements of the speciation process are not so difficult

to work with and present an exciting opportunity for study. Inviability of hybrids from

low-fitness, for instance, can be modeled and simulated. A phenotype could be tested

in a physical environment to determine its fitness. This would not have been possible

in the aforementioned studies, as the genotypes did not encode to a phenotype. Some

researchers have taken the next step and designed an evolutionary system that considers

both genotype and phenotype.

For instance [21] is an ecological simulation of the breeding patterns of a specific

fish. Although not a genotype in the strictest sense, each individual fish has a number

of variables (such as color) which are passed on during breeding. Breeding preferences

and patterns are then a function of these characteristics. So the simulation includes

phenotypic parameters in the evolution, but the phenotypes are never directly modeled.

The fish are not actually simulated in an environment to be tested for viability, their

behaviors are determined by a statistical model.

In another experiment [27] created a complex Artificial Life simulation in which organ-
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isms begin as cells and develop into multi-cellular creatures. The evolution was genomic

in nature with the organisms as the phenotype expressions. Despite the possibility for

phenotype viability testing, this experiment also used the method of calculating a dis-

tance measure.

[67] used the Framsticks 3D simulation platform in an attempt to create a speciation

event, but also did not test the phenotypes for viability. Like [71] they differentiated

between individuals based on a single gene/variable. Unfortunately the experiment was

not able to successfully create two divergent species.

An opportunity presents itself to demonstrate that viability testing can be explicitly

modeled in a three dimensional environment in a speciation simulation for the first time.
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Chapter 5

Implementation

5.1 The Basic Idea

Imagine two large flat areas, each filled with a population of 60 robots. These robots are

all homogeneous - they have all directly descended from a single genome and differ by

only 1-2%. The two areas are completely separated; robots cannot move from one area

to the other.

This is the basic setup for the thesis experiments and it is modeled using the ‘Fram-

sticks’ platform. Framsticks is a 3D simulation tool capable of evolving both ‘mechanical

structures’ and ‘control systems’ [57]. Each robot in the simulation has a genotype, which

encodes for the neural network and the physical body. The system is a powerful tool

with a C-based language that gives the programmer control over almost every aspect of

the environment and evolution. Many of the tools and libraries were not used in this

study, but there were several features which made it ideal for a speciation experiment.

The most critical parameter is the physical expression of a phenotype capable of inter-

acting with its environment. The Framsticks system allows the robot to actually be tested

for viability and fitness rather than estimating it based on the genome. As previously

mentioned, the ability to evolve both the morphology and the controller simultaneously

may also provide a more ‘open’ evolutionary system.

For the same purpose, it is also valuable for the system to have the capacity to

accommodate functionally neutral changes to the genotype. For instance, it is common

for the more complex genotypes to have one or more neurons that are not connected to a

robot’s central neural network. These neurons may play no role in the robot’s behavior,
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so how could they be useful? In a later generation there may be a slight mutation or

crossover that joins the neuron to another and instantly a complete node(s) has been

added to the network. In this way, functional additions can be made to the robot that

may not have been possible through a single incremental mutation.

5.2 The Framsticks environment

A more complete overview of the Framsticks system is available[57], so only a brief

description of the relevant details will be made. In simulation, the body of a robot

is composed of rigid posts or sticks that are joined at their ends. Mechanical actuators

positioned at the joints allow the robot to move. Just as other simulators do not explicitly

model the engines that drive the wheels of their robots, Framsticks does not explicitly

model the force-generating mechanism of its robots. It does, however, enforce laws of

physics on all movement as described by Figure 5.1. The mechanical devices used are

ones common to real robotics systems today - a rotator (such as a motor) [Figure 5.2a]

and bender (such as a hydraulic arm) [Figure 5.2b].

Figure 5.1: Framsticks Robot Body [57]

These actuators are controlled by a neural network comprised of both state neu-

rons and sensory devices. Connections between neurons are weighted but not uniquely

handled, so all neural inputs are aggregated weighted sums. The vast majority of the

state neurons used by the evolved robots are Sigmoid Neurons, common to many ER
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(a) Hydraulic Actuator (b) Rotation Actuator

Figure 5.2: Actuators on Robotic Devices [73]

experiments [35][46][91][86]. The other type of state neuron used is a Constant Neuron,

which always has a normalized output value of 1. The Framsticks system provides a

small library of different sensors that can be used for input into the neural network. For

instance, there is a sensor that can determine the distance (but not direction) to the

nearest target item. While it was likely that this would improve the functionality of the

robot, it was intentionally left out to help ensure the simulation remained as realistic as

possible. Designing a sensor to perform this task accurately in the real world would be

both costly and difficult.

For this work only two of the available sensory devices are used: gyroscopic and

contact. Both of these types of sensors are widely available and have been shown to work

on a robotics platform [110]. The gyroscopic sensor is attached to one of the robot’s

structural posts; its output is defined by the orientation of the post relative to gravity.

In the horizontal position, the sensor output is 0, but tilting the post vertically will result

in output values reaching +/-1. The touch sensor is described best as a ‘whisker’ sensor,

rather than as a button which may only have a discrete output. Non-activated output

of this sensor is -1, but at very close distances to another object the output approaches

0. If force continues to be exerted once the sensor is already in physical contact with the
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ground/object, the sensor output becomes positive up to a value of 1. All inputs to the

robot system include a measure of Gaussian noise (1% standard deviation) to help create

a more realistic environment as demonstrated by [49]s.

5.3 The Genome

The entire robot including structure, mechanics, and neural network are all encoded by

a genome. Framsticks provides a number of different encoding systems for genomes, a

complete summary is available on the development website [57]. This thesis uses ‘f1’

encoding which has been shown to be both robust yet relatively easy to understand.

It is a high-level recursive language that uses alphanumeric strings to encode the data.

Additionally, experiments have shown f1 to produce better results than the low-level

encoding [59].

The basic structure of a gene in f1 is ‘Modifiers Structure [neuron info]’. The symbols

used for structural elements are the letter X, brackets and commas. An X defines a

structural element and a bracket defines a branching point. Within the brackets the angle

of branches is divided by commas. Figure 5.3 describes a simple exercise in building the

body of a robot using branching.

Figure 5.3: Body Genetics

Modifiers are special characters that affect various physical properties of a robot.
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R Rotates parts axially
Q Twists the parts relative to each other
C Adjusts curvature by adding a slight angle between parts
W Affects buoyancy (discussed in Section 6.3.1)
L Shortens or lengthens a structural element
M Changes the amount of force exerted by corresponding actuators
F Increases or decreases the friction coefficient of the part (e.g. sticky vs slippery)

Table 5.1: Physical Modifiers

They precede their structural elements having a lessening effect on each subsequent X.

Figure 5.4 demonstrates the use of ‘R’, the rotation modifier. The first R rotates the

terminal section of the robot 45 degrees and the effect is cumulative - two Rs rotate it

90 degrees. This work makes use of the seven modifiers shown in Table 5.1.

Figure 5.4: Genetic Modifiers

5.4 Neurons

The final element in the gene is the neuron information associated with the structural X,

proceeding it in [ ] brackets. The general format is [NeuronType, PropertyandInputList]

although in the case of a sigmoid neuron the NeuronType is absent. The remainder takes

the form of PropertyType:Value or NeuralInput:Weight. There can be multiple properties

and inputs separated by commas, as well as multiple neurons for each stick in the form

X[...][...][...].
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Figure 5.5: Example Neuron Map

All inputs to a neuron are denoted as relative locations with the following syntax [location:

weight]. For example, X[T][ N,1: 0.5 ][G] defines a stick with 1 touch sensor(T), 1 neuron

(N) and 1 gyro sensor(G). In this case the neuron takes its input from the location 1

(meaning 1 to the right) which is the Gyro sensor, with a weight of 0.5. If, however,

the genome was changed to X[T][-1 : 0.5 ][G] so the input location was -1 instead of 1,

it would take its input from location -1 relative to itself which is the touch sensor. A

slightly more involved example (courtesy of Framsticks) is Figure 5.5. In this case the

first neuron [|0:1] signals the bend actuator and obtains input from location 0 (looped to

itself). The second neuron [@-1:1.2,1:2.3] signals the rotation actuator. It takes input

from locations -1 and 1, and neurons 1 and 3 respectively. The last neuron [G:1] takes

input from the gyroscopic sensor with a weight of 1.
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(a) N - Sigmoid Neuron (b) G - Gyro Sensor (c) T- Touch Sensor

(d) | - Bending Actuator (e) @ - Rotation Actuator (f) * - Constant Neuron

Figure 5.6: Neuron and Sensor Types

5.5 Crossover operation

An example of the crossover operation is shown in Figure 5.7, which describes the method

of joining the genetic information from two different robots. Since an ‘X’ in the string

denotes a structural element of the phenotype and is common to all genotypes, this

makes it a reasonable position to splice. First, the halfway point for the string is located

(shown as the arrow in step 2). The closest ‘X’ to the right of this mark is selected as the

division point (step 3). The same procedure is followed for dividing the second genome

(step4&5). The first half of Genome 1, and the second half of Genome 2 are combined

to create the new genome. The syntax of the genetic encoding makes it possible for

‘invalid’ genotypes to be created accidentally. If the gene error is minor, the system can

ignore it - essentially inhibiting that gene from expression. In Framsticks, this generally

means that a defective (syntactically incorrect) neuron, joint or limb is ignored in the

phenotype. It is possible for the error to damage the gene’s syntactic structure so badly

that the expression system cannot adjust. In effect, the genotype is so flawed that it

simply cannot be made. This is theoretically similar to the phenomenon of pre-zygotic

isolation in biological speciation events - when a hybrid organism is not born due to

genetic incompatibilities.
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Figure 5.7: Crossover Operation

5.6 Mutation operation

Mutations are also an important part of the robotic evolution as they provide ‘fresh’

genetic material. Some experiments in ER use completely random mutation[72][35],

but this would be impractical given the syntactic structure and would likely produce

even more invalid genotypes. Instead the mutation operation in Framsticks is highly

customizable both for morphology and for the neural network. Figure 5.8 displays those

properties that were mutated in the majority of tests as well as their corresponding

probabilities. In this setup a single connection weight is changed in the neural network

100% of the time, but a stick will be removed only 5% of the time.

Many have suggested that morphological evolution in conjunction with neuronal evo-

lution helps us approach open-ended evolution. However given the current state of tech-

nology, the actual application of that theory outside of simulation is largely impractical.

It seems the vast majority of ER experiments recognize this implicitly in their choice of
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Figure 5.8: Mutation Operation

Figure 5.9: Non-Morphological Mutation Operation

neural network evolution only. So while the choice of Framsticks was made specifically

because of its ability to perform morphological evolution, a series of experiments was

also performed to attempt speciation through controller evolution alone. To achieve this

all aspects of the robot were held constant except the neurons and their weights. The

structure and mechanics of the very first robot was identical to that of the very last as

well as the hybrids. No changes to the operation of the crossover function had to be

made, only the mutation operator was adjusted using the parameters shown in Figure

5.9. The initial population also had to be morphologically homogenous.

5.7 Comparison Tools

On a fundamental level speciation describes a stable clustering trend, a convergence to-

wards a local optima. Identifying low hybrid fitness addresses the stability but tells us



47

little about the clustering itself. To accomplish this requires some quantification of the

robot itself independent of its performance. As speciation is an inherently relativistic

concept [22], using a relative metric for this only makes sense. The robots can be con-

sidered in two different dimensions, their genotype and their phenotype. For genotypic

comparison the Levenshtein Distance calculation is used, which when applied against

two genomes gives the number of single character changes required to turn one into the

other. Some of the properties used in these experiments (see Figure5.8 on page 46) use

multi-character mutations, so this gives a more approximate value to the evolutionary

distance between genotypes rather than an exact one. It is also closely related to the

Hamming distance calculation used in many other simulations, which performs the same

function but for fixed length genomes.

Not surprisingly defining a measure of the difference between phenotypes is much

more complicated, this thesis uses the method described by [58]. In this, the properties

of the phenotype are divided into more manageable groups. First are the physical char-

acteristics, the structural elements and the joints. This includes most of the modifiers in

table 5.1 and more importantly the overall map of the body as it relates to each part’s

degree 1. Once the two robots have been compared and their parts matched for simi-

larities, the associated neural elements are compared. This is done first based on the

number of neurons for the matched parts, and then for their parameters (connections,

sensors, actuators . . . etc). The final summation value is an estimation of the dissimilarity

between the robots.

5.8 Robot Movement in Framsticks

The locomotion of robots in Framsticks could be described as ‘limb-driven’ rather than

‘wheel driven’ as it is in many other ER experiments. Similar to the foundational work

1‘degree’ as it is defined in graph theory: The number of connections at any given vertex
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of Sims[104] and Lipson[66] these robots tend to evolve crawling, hopping or walking as

their primary methods of movement. This is common in other ER simulations that allow

complete morphological evolution [90][12]. Figure 5.10 shows an example of an evolved

robot moving across the ground. It first reaches forward with two sections of its body

and then pulls its entire frame along the surface. Repeating this action allows this robot

to effectively transverse across the simulation environment.

Figure 5.10: Basic Robot Movement in Framsticks

5.9 Experimental setup

As mentioned above, the experiments model two isolated populations of robots. While

the initial populations of robots are identical in the two experiments, the environments are

slightly different. Both possess the exact same rules such as physics, and both are filled

with ‘target items’- but the placement of these items differs. Target items [figure] are discs

that are scattered randomly throughout the environment. In the case of environment 1,

these targets lie on the ground [Figure 5.11a]. In environment 2, called the ‘Low Hanging

Fruit’ (LHF) environment, the targets hang in the air, just above the ground [Figure

5.11b]. In essence, environment 1 places the targets randomly in two-dimensions, while

the LHF places them randomly in three dimensions.

These target items define the performance, or fitness, of the robot. When a robot

touches a target item it receives points, each target only has a certain number of points

to give after which it disappears. A new target will appear randomly in the environment

to replace it.
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(a) Environment #1 (b) Environment #2 (LHF)

Figure 5.11: Experimental Setup

These two environments were designed to provide nearly identical scenarios for robot

development while also incorporating a controlled differentiation. The relative complexity

of the Framsticks genetic system should also allow for multiple evolutionary paths to

be taken in response to varying environmental cues. Coupled, these features create

an excellent platform from which to experiment with, and hopefully generate robotic

speciation.

5.10 Breeding process

Once a specified number of steps/cycles (usually 10000) have passed the robot enters a

breeding mode. The robot looks to a random2 member of its population and receives its

fitness value (communication protocols are beyond the scope of this work). The fitness is

calculated as points/lifetime - this is used rather than just points, accounting for the fact

that the second robot will not have been alive as long as the breeding robot. Lifetime is

calculated as the number of cycles the robot has been functioning for. The selection of

what genotype will be used for the next 10000 cycles is determined as follows:

If the fitness of the second robot is lower than that of its own, the first robot will

reset (lifetime and points =0) and continue using its current genome. If the second robot

2Through selecting a random robot the communication is simplified to ignore locality, thereby con-
trolling for the effects of dispersal as described by Payne [87]
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Algorithm 1 Selecting which Genotypes will be Used

if Robot1.f itness ≥ Robot2.f itness then
ResetAndContinue(Robot1)

else
if (Robot2.f itness ∗ 1000) > Robot1.f itness then
Robot1.genotype← Robot2.genotype

else
Robot1.genotype← Crossover(Robot1.genotype,Robot2.genotype)

end if
end if

has a higher fitness value, the first robot will perform a crossover operation using both

robots’ genomes. If the product of the crossover function does not have any genetic errors

it will also be mutated. A substantial gap in the fitness of the two robots could be an

indication that one of the robots is low performing or the other is high performing (or

both). In this case it would be beneficial for the first robot to duplicate the genome of

the second robot rather than performing a crossover. This action is performed if the

fitness values differ by a factor of 1000 or more (see Figure5.12 for rates). Allowing the

robots determine their own breeding rather than determination through an omnipotent

central system aims to simulate embodied evolution - a process more similar to evolution

in nature.

(a) 1 Million Cycles (b) 25 Million Cycles (c) 50 Million Cycles

Figure 5.12: Rates of Crossover and Cloning at Different Times in Sample Test



51

5.11 Test procedure

The two populations both run for 50 million cycles, during which they make some evo-

lutionary progress in adapting to their environments. At every millionth step a sample

of the genepool is taken. Testing, for the purpose of data collection, is performed in-

dependently of the evolution and has no effect on the robot’s adaption. Each of the

samples contains the complete genome for all 60 robots in each population. Every one of

these robots is individually tested for fitness in their native environment for 7500 cycles.

With the timing held constant, fitness is taken simply as the number of points the robot

acquired. This test is performed twice for each robot and the average of the fitness values

is saved. This amounts to

2populations× 50
samples

population
× 60

robots

sample
× 2

tests

robot
= 12000tests

The next step is to determine how effective hybrids robots generated from the samples

would be. A random genome is selected from the first population, and another from the

second. The same crossover function that is used in the evolutionary process is used to

generate an offspring genome from these parent robots. This is repeated until up to 60

valid hybrid robots have been generated for each of the 50 sets of samples. Again, each

of these hybrids are tested twice for fitness. The result is data at regular intervals during

the evolution showing the relative viability of hybrids generated as the two populations

diverge.

The following section will cover a number of individual tests performed using these

systems. Additional parameter information and experimental setup details are available

in the Appendices A & B.



52

Chapter 6

Results

6.1 The Classical Scenario

The first results presented are those that were tested in an Allopatric setting, the Classical

Scenario as described in the previous section. The intial population is cloned from a robot

called M5, which is a functioning, pre-evolved robot specifically created for these tests.

Its body is composed of 4 sections, with 3 bend actuators and 2 rotational actuators as

can be seen in the neural network (fig 6.1c) and genotype (fig 6.1a). The primary method

of movement is best described as jumping; it is a combination of vertical and horizontal

travel. It first compresses its joints and then releases them simultaneously, springing up

and forward. As figure 6.1b shows, the robot lifts itself completely off the ground. M5

provides an excellent genome from which to generate a population for the allopatric test

because it is already capable of acquiring both ground and LHF targets. Without an

ability to achieve at least modest fitness, the robots are less likely to find a successful

evolutionary path (bootstrap problem).

(a) M5 Genotype (b) M5 Phenotype (c) M5 Neural Network
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6.1.1 Course of Evolution in Ground Target Environment

The original M5 genotype was not particularly well suited to acquiring targets scattered

on the ground, considering its tendency towards vertical travel (see Figure 6.1b). However

the basic means of locomotion was not entirely ineffective, and after 10 million cycles,

the robots have started to move along the ground rather than jump 6.1. They continue

along this evolutionary path and optimize their motion for fast and efficient horizontal

movement 6.2. The evolutionary progress is evidenced by the overall increase in fitness

of the population, as shown in Figure 6.3. Recall fitness is defined in Section 5.11 as the

number of point each robot acquires during testing.

Figure 6.1: Locomotion in Ground Target Environment at 10 Million Cycles

Figure 6.2: Locomotion in Ground Target Environment at 50 Million Cycles

Figure 6.3: Fitness of M5 during Evolution in Ground Target Environment
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6.1.2 Course of Evolution in LHF environment

The M5 robot requires little structural change in order to adapt to the hanging target

items of the LHF environment and still looks very similar even after 50 million cycles

of evolution (see Figure 6.4). However the original jumping behaviour, while effective,

required some optimization. After the experiment is complete, the robots are able to

collect approximately 1.5 times as many target items as the initial M5 phenotype as

described by Figure 6.5.

Figure 6.4: Evolved M5 Robot Jumping Towards LHF Target

Figure 6.5: Fitness of M5 during Evolution in LHF Environment

6.1.3 Hybridization

Hybrid robots are generated using the crossover operation described in Section 5.5 using

a parent genotype from both populations. Early in the experiment, before the popula-
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tions diverge significantly, the hybrid robots perform reasonably well. However as the

genotypes of the robots in the two environments become more dissimilar, the hybrid

fitness levels fall away while the parent populations remain viable (see Figure 6.6).

Figure 6.6: Hybrid Fitness During Evolution of M5 Robots

The hybrid may still have much of the same physical structure as its parents (see Fig-

ure 6.7), but it appears to operate without intention. The movements of the hybrids do

not display the coordinated patterns required for locomotion. Any physical displacement

that is attained lacks consistent direction - in general the hybrid could be described as

‘flailing’. This is likely the result of divergent evolution in the robot’s actuators and in its

neural network (See Figure 6.8). The neural networks are presented here to display their

overall topography, rather than for a detailed analysis of their operation. For simplic-

ity, recognition of changes to neural network function are implicit in the recognition of

changes in robot behaviour. The results demonstrate the emergence of reproductive iso-

lation between the two populations as a result of their independent evolutionary paths.

In losing the ability to produce viable offspring between the groups, they satisfy the

definition of a speciation event.
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Figure 6.7: Hybrid Generated from Evolved M5 Robots

Note that this does not suggest that we cannot prevent speciation from occurring in

these artificial systems, in fact we have the same power to disrupt normal evolution in

the real world (which we do regularly through animal husbandry). Humans have created

a number of creatures that nature surely would have been made extinct if it werent for

their perceived value as pets or livestock. Instead this is a demonstration that speciation

can happen naturally in robotics through many of the same mechanisms as it does in

biology.

6.2 Morphological Testing

The average person, if asked to explain why dogs and lake trout are different species, is

unlikely to refer to reproductive isolation. Instead they may point out various physio-

logical or morphological differences, such as lungs vs gills, fur vs scales, etc. This more

intuitive approach makes use of the Morphological Species Concept(MSC), which is simi-

lar to the taxonomic systems used in traditional cultures [39]. Other methods for defining
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(a) Neural Net from
Ground Population

(b) Neural Net from LHF (c) Neural Net of Hybrid

Figure 6.8: Low Functioning Hybrid Neural Network

species also use some measure of phenotypic similarity such as the Phenetic and some

forms of the Phylogenetic Species Concepts [94]. So while reproductive isolation, and

therefore speciation within the context of the BSC, was demonstrated in the last section,

further genotype/phenotype analysis may serve to reinforce and clarify the results.

As described in section 5.7, genetic differences will be measured as Levenshtein Dis-

tance which estimates the number of mutations required to change one genotype into

another. The difference between phenotypes is calculated as a combination of the dif-

ference between body parts, neural networks, actuators and sensors, as also described in

section 5.7. Morphological analysis need not be so formulaic though, a simpler and more

subjective approach may be used as well.

Using these techniques to individually analyze each genome from the experiment

discussed in the previous section yields interesting results. Early in the evolution, the two

populations remain largely the same and occupy the same genotype-phenotype distance

space (see Figure 6.9). However as the experiment progresses, and evolutionary pressures

direct the two populations in different directions, a gap can be seen forming in Figure

6.10a. The relative differences increase over time and the two populations continue
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to move further away from each other. Just as important, though, is that while the

populations are moving apart, the robots within those groups remain cohesive in both

genotype and phenotype space. This means the robots are genetically and physically

similar to the members of their own population but different from members of the other

population, thereby satisfying the basic definitions of other species concepts as well.

Figure 6.9: Genotype/Phenotype Distance before Evolutionary Divergence

6.3 Environmental Impact on Speciation Rate

Ecological speciation is dependent on environmental differences to promote genetic di-

vergence. If the two environments in question are not sufficiently different, speciation

may not take place. Theory states that evolutionary divergence is linked to ecological

differentiation [80][96]. This relationship can be tested in the robotic simulation as well

by increasing the environmental differences to see if that promotes speciation as it does

in biology [40].

The results demonstrated so far have used the original environments Ground Targets

and LHF, as described in section 5.9. These differ only in the height of the target items;

all other parameters are kept constant. To test if robotic speciation demonstrates a

similar reaction to an increase in environmental differences requires a third simulation
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(a) 1 Million Cycles (b) 25 Million Cycles

(c) 50 Million Cycles

Figure 6.10: Genotype/Phenotype Distance Throughout Evolution

setup. One might imagine these first two as air environments, though air is not explicitly

modeled.

6.3.1 The Water Environment

Framsticks also has the ability to simulate a fluid / water environment for the robots to

evolve in such as the one in Figure 6.11. The transition from ‘dry’ land to an environment

that includes a surrounding fluid comprises changes that go beyond merely altering the

positions of the targets. First is the way the robot can move about while acquiring

targets. It allows locomotion to be generated via fluid propulsion (such as a kick would

provide) as well as by friction. It also incorporates buoyancy into the physics engine;

each stick element has an evolvable parameter for weight that determines how much it
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floats. This, as [102] points out, also requires less balance on the part of the robot.

Figure 6.11: Water Environment

6.3.2 Evolution in Water

The same initial population as the tests in section 6.1.2 are used in this water evolu-

tion test. The original phenotype, while quite functional on land, is almost completely

immobile in the water. After one million cycles, the structure has already changed dra-

matically (see Figure 6.12b). The robot no longer has a long straight body, but has taken

a semi-quadruped shape with four limbs articulated from a central point. It still lacks

buoyancy and moves along the ground in a similar fashion to a starfish, as described in

Figure 6.12b. By five million cycles, the robot has become more neutrally buoyant which

generally helps water-borne organisms move more effectively. It has kept the central

articulation and has evolved to the general shape that it will keep for the remainder of

the simulation.

Locomotion is primarily generated through a vertical paddling motion of the intermediate-

length limb. This propels the robot through the water in a forward motion. The small

limbs oscillate up and down with the robots movement through the water, in a similar

fashion to the pectoral fins of a fish. It is likely that they provide some of the same lateral
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(a) Original M5 (b) 1 Million Cycles (c) 5 Million Cycles

(d) 50 Million Cycles

Figure 6.12: M5 Evolution in Fluid Environment

stability by preventing undesirable rotation of the body. Finally the long limb appears

to perform three different functions. First it drags along the bottom optimizing the col-

lection of target items as it passes. It also assists in motion by re-stabilizing the robot

after each ‘kick’, and by using some friction to create an additional pulling movement.

This adaptation towards swimming contrasts sharply with the land-based jumping

techniques in Figures 6.2 and 6.4. In a comparison between the final products of both

evolutionary paths, it is clear that the behaviours, morphology, and neural network have

all become substantially different. From an MSC standpoint, the robots do appear to

have diverged into different species.
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(a) Original M5 (b) 1 Million Cycles (c) 5 Million Cycles (d) 50 Million Cy-
cles

Figure 6.13: Neural Network Evolution in Fluid Environment

Figure 6.14: Low Hybrid Fitness on Land

The Biological Species Concept provides an even clearer picture. Hybrids generated

from the two populations are tested for fitness in both environments. On land their fitness

levels drop off within the first few million cycles (see Figure 6.14) and they remain low

for the rest of the experiment. In the water environment, they fare even worse. Figure

6.15 shows the hybrids remaining in a low-fitness status for the entire simulation. These

two groups of robots, though descended from a single ancestral genotype, have become

unable to produce viable hybrid offspring.
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Figure 6.15: Low Hybrid Fitness in Water

6.3.3 Rate of Speciation

This is another example of speciation through the formation of post-zygotic reproductive

isolation. However, it differs from the results from section 6.1.3 in its timing as well

as in the extent of the isolation. These hybrids have even lower fitness levels and their

performance decreased earlier - they appear to be more completely speciated. One begins

to understand the continuous nature of speciation when reviewing these results. The

completeness of the speciation points to a difference in the overall pattern of change

between the populations. A comparison of all three experimental groups is shown in

Figure 6.16. By the end of the test, the new water robots have in fact diverged further in

both genotype and phenotype than the land robots did, when compared to one another.

The rapidity of the divergence also points to a difference in the rate at which the two

populations were changing. Figure 6.17 shows a comparison of the rates of divergence in

both the M5 land test and the M5 water test. This is measured as the product of the

Genotype and Phenotype difference measurements as taken at increments of one million

steps. There is not only substantially more difference between the robots, but it also

happens much more quickly.

So in a computing system, an understanding of the difference between two environ-

ments may offer some predictive value of whether a speciation event could occur or not, as
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Figure 6.16: Difference in Overall Divergence

Figure 6.17: Difference in Rate of Divergence

well as the rate. This parallels the correlation between the level of ecosystem divergence

and a promotion of reproductive isolation that is observed in nature [40].

6.4 Mutation Order

Though environmental differences do appear to affect the patterns of speciation, they are

not a mandatory element for progress. Duplicating the previous experiments, a homoge-

neous population is split in two and separated geographically, which eliminates gene flow.

However, instead of presenting the populations with two dissimilar environments, they

will exist in identical worlds. Exactly the same selection and evolutionary pressure will
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be exerted on the two groups. In this situation it remains possible that the populations

will, through the stochastic nature of mutations, take divergent evolutionary paths. This

form of non-ecological allopatry is called Mutational Order Speciation[20].

Designing this experiment requires a relatively small adjustment from the previous

setup. Rather than using a combination of ground, LHF and water environments, the

mutation order test will only use ground targets, thereby creating identical worlds for

both populations. Figure 6.18 shows the slow morphological evolution of the M5 robots

in both populations. Without any difference in selective pressure, this process takes

considerably longer. The experiment is run for two hundred million cycles, four times

longer than the first M5 data in Figure 6.6.

Figure 6.18: Evolutionary Progress in Mutation Order

The results in Figure 6.19 show a similar pattern but across the longer time scale. For

the first hundred million cycles, which equates to approximately ten thousand genera-

tions, the hybrid robots perform comparably to both evolving populations. The eventual

decrease in fitness takes nearly fifty million cycles to complete. Afterwards, the repro-

ductive isolation remains stable with hybrids displaying consistently low fitness.

Morphological comparisons provide further evidence of the speciation beyond hybrid

viability. The results show both populations growing apart but remaining relatively

similar internally. The final phenotypic distance in Figure 6.20 is less than that of the

other tests (see Figure 6.16). Again, this agrees with the prediction that environmental
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Figure 6.19: Fitness Results in Mutation Order Experiment

differences positively relate to the speciation process.

The results of this section may be additionally valuable to both biology and comput-

ing. Mutation order speciation is less substantiated than the more traditional scenarios

precisely because it is difficult to show in nature [79]. Demonstrating that 3D simu-

lation tools can describe process details at an individual level reveals another path of

study. Also, most ER experiments do not include multiple differentiated environments

or selection pressures. Evidence that robots may form species groups even in uniform

surroundings is more applicable for comparison to other computing research.

6.5 Genetic Drift

All of the results presented so far have related to two populations divergently adapting to

their environments (even if they were the same). These forms of speciation are inherently

selection driven, they arose from the robots gradually altering themselves for better

performance. However, adaptation is not the only means of creating genomic change-

chance plays a role as well.

Genetic Drift is defined as “random fluctuations in gene frequencies in a small breeding
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(a) 10 Million Cycles (b) 100 Million Cycles

(c) 200 Million Cycles

Figure 6.20: Morphological Testing of Mutation Order Populations

population” [82]. While some of the mutations which occur during the transmission of

genetic material impact performance, others do not. These fitness-neutral differences in

the genotype do not necessarily constitute change in phenotype space. However their

cumulative effect over many generations can amount to a very important change in

genotype space.

The M5 population makes a poor genetic drift test subject for precisely the same rea-

son it make a good ecological test subject, it evolves rapidly towards a more fit individual.

To examine the effect of genetic drift requires that the robots maintain relatively stable

performance values throughout the test. For this, another homogeneous population of

robots, herein called M9, was evolved. As Figure 6.21 shows, the M9 robot uses a similar

spring motion for locomotion but is smaller than M5. More importantly, it was evolved

until its progress tapered off, thereby lowering the chance of the population making a
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jump in performance.

Figure 6.21: Locomotion in the M9 Robot Population

Genetic drift is believed to operate more heavily in smaller populations [41], so rather

than 60 robots, these two populations will be comprised of only 25 robots. Similar to

the mutation order test, only one environment is used for the experimental setup. In

this case the suspended targets (LHF) are used, with no water or ground targets. The

results shown in Figure 6.22 show the two M9 populations remaining stable throughout

the test. This means that any genetic changes accrued by the robots were largely fitness

neutral.

Figure 6.22: Speciation through Genetic Drift

Despite this lack of difference in performance and the complete lack of environmental

differences, the two populations do begin to diverge. Hybrid fitness remains at compara-

ble levels for over 25 million cycles but finally drops off. The two populations eventually
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lose the ability to produce viable offspring and become reproductively isolated demon-

strating that robotic speciation is possible even in the absence of selection pressure.

6.6 Anagenesis

The previous results have all dealt with situations involving cladogenesis - speciation

resulting from a branching event. This compares two populations as they evolve alongside

one another. The alternative is anagenesis which describes speciation within a single

lineage. It does not involve a branching event, as it is the evolution of one species into

another. The comparative measure then, is not a co-evolving population but the ancestor

species itself. This has application to understanding the evolutionary progress in many

existing ER studies, specifically those that do not involve population segregation. The

species concept could provide a framework for marking important change in an population

as well as differentiating between evolutionary improvements that only impact fitness

compared to those which change the genetics more fundamentally.

Figure 6.23: Anagenesis in Water Evolved Robots

To demonstrate anagenesis, consider the robots that evolved in water from the last

test. Looking at their final form (Figure 6.13d) compared to the ancestral population of
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M5 robots (Figure 6.13a), it is clear from a morphological standpoint that they lack much

similarity. In biology, anagenesis typically involves species that have been separated by

millions of years, so there is little information available about reproductive isolation [41].

A convenience that is available in simulated environments is that a copy of the ancestor

population can be saved for testing, allowing the use of the BSC. In Figure 6.23 the

same hybridization tests are performed with the evolving population and the original

unchanging M5 population. After approximately fifteen million cycles the hybrid fitness

levels permanently drop to almost zero. Enough change has accumulated in the new

population that it can no longer generate viable hybrids with the M5 robots. In Section

6.3.2 it was demonstrated that these water robots are a different species than the evolved

land robots - whereas this shows that they are a different species than the M5 robots as

well.

6.7 Evolving the Controller

Most ER experiments involve evolution of the robotic controller, and occasionally the

utilization of the sensors and actuators. Less common is complete morphological evolu-

tion, likely because this is difficult to implement outside of simulations. Demonstrating

meaningful results to a larger research community requires a non-morphological variant

of robotic speciation. To accomplish this, the physical structure of the robot is held

constant through all tests and in both populations. All modifiers (see Figure 5.1) remain

completely unchanged as well, so the body of the first robot is identical to the last robot.

The neural network, sensors and actuators are evolved using the mutation rate shown in

Figure 5.9. A population of structurally homogenous M5 robots was used to initialize

the test. All other elements were kept the same as the Classical Scenario, using one

environment of ground targets and the other with suspended targets (LHF).
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Without morphological divergence, the only visual difference between the populations

is behaviour. Figure 6.24 shows the evolved method of movement in the ground target

environment. It is a basic crawling pattern where the robot rarely lifts entirely off the test

surface. In contrast, the robots that evolved in the LHF test are able to effectively launch

themselves both forward and up. This direction of locomotion, described in Figure 6.25

is ideal for collecting the suspended target items.

Figure 6.24: Locomotion for Population 1

Figure 6.25: Locomotion for Population 2

Both populations evolve relatively simple neural networks to control their behaviours

(see Figure 6.26). Despite their overall lack of complexity, the two are still substantially

different both in layout and in function, as demonstrated by their movement. The dis-

similar selection pressures between the populations lead them to generate two different

controllers.

The fitness results shown in Figure 6.27 indicate that both groups achieved rapid

fitness gains early into the simulation. This was followed by a sustained stabalization

period marked by consistent performance values. The hybrid test scores show that spe-

ciation did not occur until near the forty million cycle mark. After this, the populations

became reproductively isolated and were unable to produce viable robots from hybrid

genotypes. The hybrids, of course, have the same identical structure as the original M5

population as well as all the evolved populations. However, the neural networks (an
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example is shown in Figure 6.26c) are not identical. Though it is not obvious from this

diagram that any defects are present, the low fitness scores indicate that the controller is

not able to generate the complex and synchronized patterns required to move the robot.

(a) Population 1 (b) Population 2 (c) Hybrid

Figure 6.26: Final Neural Networks in Non-Morphological Evolution

Figure 6.27: Performance Results from Non-Morphological Evolution

Phenotype and genotype testing also indicate that the two populations have diverged.

Figure 6.28 shows the progression of a widening genetic gap between the groups. As with

the other experiments, there is clear movement of the populations away from each other
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but internally the robot populations remain very similar. Distance builds across the phe-

notype axis as well because it incorporates a measure of neural similarity (as described

in Section 5.7). This can be removed from the comparison equation, leaving only mor-

phological elements. Not surprisingly the results of that test, pictured in Figure 6.29,

show no difference between populations indicating that the robots remain structurally

identical.

(a) 1 Million Cycles (b) 50 Million Cycles

(c) 100 Million Cycles

Figure 6.28: Genotype/Phenotype Difference in Non-Morphological Evolution

An interesting feature of this speciation event is its timing with regard to the afore-

mentioned stabalization period. When hybrid fitness levels decreased, the two popula-

tions had already ceased to increase in performance. This indicates that the speciation

event may not have been the result of a difference in selective pressure but possibly due

in part to genetic drift instead. In either case this demonstrates that speciation in robots

can occur with non-morphological evolution as well.
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(a) 1 Million Cycles (b) 50 Million Cycles

(c) 100 Million Cycles

Figure 6.29: Genotype/Phenotype Difference Ingorning Neural Similarity

6.8 Crossover function Proof

A certain amount of scepticism is always valuable, and it may have occurred to some

readers that many of these results could have been generated not by speciation but by

a faulty crossover mechanism. Although it seems rather unlikely, it is still theoretically

possible that the evolutionary gains seen by both species were entirely the result of

mutation, while concurrently every robot generated through crossover was lower fitness.

Such a setup could yield results exactly like those in Figure 6.6, with two functional

populations producing hybrids that fail. So it seemed worthwhile to dispel these concerns

with a relatively simple test. If the genotype and phenotype divergence between two

populations were removed then speciation is eliminated from the equation. This can be

done rather easily by using identical populations for the test, rather than two divergent

ones. The results are shown in Figure 6.30.

The data shows that the crossover function does not generate lower quality genotypes
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Figure 6.30: Crossover Operation Performed on Non-Divergent Populations

when divergence is eliminated. The hybrids produced are viable, high-functioning robots

of equal fitness to the parent species. This proves that the low-fitness performance scores

of hybrids seen throughout this thesis are not the effect of an inherently faulty crossover

mechanism.

6.9 Speciation Simulation

While existing speciation simulations clearly serve a purpose, it is still argued that their

accuracy could be improved [123]. The treatment of speciation as a discrete process, that

is that it occurs instantly rather than over a period of time, is a gross oversimplification

when reviewing a single event. Figure 6.31 shows the marked difference in the pattern of

fitness between data generated from the non-morphological test compared to a species as

defined only by genetic distance. Depending on the desired granularity of data, physical

testing of hybrid viability may prove a useful tool for speciation simulations.
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Figure 6.31: Comparison of Fitness between Discrete and Continuous Speciation

6.10 Secondary Isolation

Thus far, the demonstrated format for robotic speciation has been as follows: exter-

nal isolation through separation leads to divergence resulting in low-fitness hybrids and

therefore post-zygotic isolation. This exact same pattern is well understood to create

biological speciation as well [123]. However most species in nature eventually develop

multiple isolating barriers. For example, this inital post-zygotic isolation is often followed

by a process called ‘reinforcement’. This is the active selection against hybridization as

a result of lowered fitness, i.e. Organisms will not breed with hybrids because they do

not appear to be good mates.

To test for this phenomenon in Framsticks a population of robots equally composed

of the two species and the hybrids generated in the mutation order test will be used.

After each robot is operated for 7500 cycles it randomly chooses another robot to mate

with. The gene selection process used is identical to the one used in all the experiments
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as described by 1. In this method all mating events result in one of two possiblities:

either the second robot is selected to pass on some genetic information, or it is rejected

because it is not performing adequately. In general one would expect the average robot

to have a selection rate of approximately 50%, half the time it has higher fitness half the

time it has lower. This is precisely what is found in both species (see Figure 6.32). The

hybrid robots, on the other hand, are rejected almost 90% of the time, demonstrating a

strong selection against hybridized genotypes. In this way, the creation of a secondary

pre-zygotic isolation barrier has naturally formed in the robot populations.

(a) Species 1 (b) Species 2 (c) Hybrids

Figure 6.32: Selection Against Hybrids
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Chapter 7

Conclusion

This chapter will first present a quick discussion of the contributions and conclusions of

this work and then summarize them. Finally, open questions and potential avenues for

further research will be described.

7.1 Results and Conclusions

This thesis investigated the ability of a population of homogeneous robots to indepen-

dently evolve into species groups as defined by biology. To accomplish this, experiments

were performed in a physics-based 3D simulation platform called Framsticks. Geneti-

cally encoded robots were subjected to evolutionary pressures both neurologically and

morphologically, forcing them to adapt to various scenarios and environments. The pop-

ulations utilized decentralized sexual reproduction though a combination of crossover and

mutation operators.

Two identical robot populations were separated so as to prevent contact, and then

allowed to evolve in dissimilar environments - a scenario closely related to Darwins work.

This resulted in the two populations progressing along divergent evolutionary paths.

These two groups became increasingly different in their genetic makeup, a phenomenon

that began to interfere with their ability to crossbreed. Hybrid robots, the genetic off-

spring of a pair of robots, one from each population, exhibited substantially lowered

fitness - a demonstration that reproductive isolation barriers had formed. Having lost

the capacity to generate viable offspring, the two robot populations emerged from their

evolutionary journeys as different species.
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In addition to the use of the Biological Species Concept for delineation, these robot

species were further considered for both phenotype and genotype separation. Using a

combination of morphological and neurological comparisons all individuals were analysed.

That showed that the two populations had become quantifiably different from one another

physically, yet the members of each population remained cohesive among themselves.

An inspection of the genotypes yielded similar patterns, members within a species were

genetically close to each other but distant from others . The two robot species were

measurably distinct yet cohesive groupings.

It was further demonstrated that reproductive isolation in the robots gave rise to

secondary pre-zygotic isolation barriers. In nature, the active selection against hybridized

genotypes, due to their low fitness, further prevents gene flow between populations if they

are no longer physically separated. This process of reinforcement is an important next

step in the development of a species in nature.

Additional parallels between robotic evolutionary development and biology are demon-

strated. Under testing robots exhibit a positive correlation between the degree of envi-

ronmental differences and the process of genetic divergence similar to that which is seen

in nature. This was accomplished by presenting the populations with fundamentally dif-

ferent environments - one on land and one in water. The result was an increase in both

the rate of speciation and the overall genetic difference between the two populations.

A speciation event can also occur under different circumstances and through differ-

ent mechanisms. When evolutionary changes that emerge as a result of environmental

pressure lead to reproductive isolation, it is referred to as ecological speciation. This

is in contrast to mutation order speciation wherein the two populations are separated

but remain in similar environments. This arrangement was also performed using the

same homogeneous population of robots. The experiment once again concluded with two

populations that no longer effectively hybridize, as a result of evolutionary divergence.
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Robots can form species groups even without the assistance of selection pressure.

Divergence in the robot genetics can also be the effect of random mutations rather

than progress-driven selection. A test was performed in which two populations were

simulated for a long period of time and yet neither showed any signs of evolutionary

changes impacting performance. They did, however, accumulate enough different fitness-

neutral changes to begin producing lower fitness hybrids. This shows that artificial

speciation can occur through genetic drift.

It was further demonstrated that evolving robotics may undergo speciation without a

separation of the populations. Anagenesis is a term used to describe the gradual change

of one species into another within a single lineage. By comparing the initial population

of robots against the final evolved population, it was shown that speciation had occured.

The genotype and phenotype characteristics had changed significantly, but each robot

remained similar to its co-existing relatives. A reproductive isolation barrier had also

arisen in the form of low-fitness hybrids. This may be especially relevant to current

ER experiments where allopatric separation is uncommon, providing a new method of

understanding the evolutionary progression.

Further experiments were conducted by restricting evolutionary change to non-structural

elements such as neurons and neural weights. Similar to the other experiments, hybrids

generated from crossbreeding the populations had substantially lowered performance rat-

ings. Even with entire sections of the genome held constant, the robot populations were

able to generate enough genetic change to create reproductive isolation. This is addition-

ally applicable to many existing ER platforms where complete morphological evolution

is difficult or impossible.

Finally, the summation of these results indicates that 3D simulators may be a useful

method of studying some aspects of speciation. They allow for actual hybrid viabil-

ity testing rather than delineating species based on genetic distance. Treatment of a
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speciation event as a continuous process rather than a discrete one would more closely

approximate the biological phenomenon.

7.2 Future work

The original goal of this work, to prove that robots can form into species was accom-

plished, but to understand the broader implications of this will require substantially

more research. First, the mechanics of speciation are determined entirely by the defini-

tion that is chosen. This thesis primarily used the BSC and found supporting evidence

through the MSC. The BSC was used for two basic reasons; first it is the most commonly

used in biology. Second, groups divided by reproductive isolation have the feature of

self-sustaining separation. This provides a platform-independent definition, whereas for

instance, measuring species through genetic distance does not. However this still may not

prove to be the best or most applicable choice for defining species in an artificial system.

Unfortunately, the BSC does not apply well to the asexual systems that are relatively

common in ER. Therefore future work may include an analysis of how speciation can

occur within a variety of different setups including random or multi point crossover, or

no crossover at all.

Having demonstrated speciation, the next important step may be to understand the

conditions under which two species may remain stable. If the two populations are reunited

will they both persist or will one overtake the other due to drift or perhaps a marginal

difference in fitness? Speciation is tantamount to multiple incongruent solutions arising

for a single problem. Determining how both solutions may maintain themselves could

make this a useful tool for all EAs.
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Appendix A

Appendix - Parameters

A.1 General Test Parameters

The following is the complete parameter list used for all tests. Exceptions and additional

details will be noted in the following Section A.2.

created Sat Mar 19 13:18:50 2011

sim_params:

expdef:standard

usercode:

autosaveperiod:0

overwrite:1

filecomm:1

createrr:0

creatwarnfail:0

importchk:0

loadchk:0

groupchk:0

resetonexpdef:1

initialgen:X

capacity:200

delrule:0

MaxCreated:1

placement:0

rotation:0

creath:0.1

p_nop:20

evalcount:0

p_mut:64

p_xov:16

xov_mins:0

selrule:2

cr_c:0

cr_life:0

cr_v:1

cr_gl:0

cr_joints:0

cr_nnsiz:0

cr_nncon:0

cr_di:0

cr_vpos:0
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cr_vvel:0

cr_norm:0

cr_simi:0

Energy0:10000

e_meta:1

feed:200

feede0:200

foodgen:

feedtrans:1

aging:0

stagnation:0

minfitness:0

boostphase:1

makesound:0

savebest:0

log:0

notes:

totaltestedcr:0

wrldtyp:0

wrldsiz:200

wrldmap:

wrldwat:-1

wrldbnd:2

wrldg:1

simtype:0

nnspeed:1

odeshape:0

odestep:0.05

odemusclemin:0

odemusclemax:10

odemusclespeed:1

odeairdrag:0.01

odewaterdrag:0.5

odewaterbuoy:1

odeseed:0

odesepsticks:0

odeworlderp:0.2

odeworldcfm:1e-05

odecolmumin:0.1

odecolmumax:5

odecolbounce:0.1

odecolbouncevel:0.01

odecolsoftcfm:0

odecolsofterp:0

odecol2mumin:0.1

odecol2mumax:1

odecol2bounce:0.1

odecol2bouncevel:0.01

odecol2softcfm:0

odecol2softerp:0

gen_hilite:1

gen_extmutinfo:0
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genoper_f0:0

genoper_f1:0

genoper_f2:0

genoper_f3:0

genoper_f4:0

genoper_f7:0

neuadd_N:1

neuadd_Nu:0

neuadd_G:1

neuadd_T:1

neuadd_S:0

neuadd_*:1

neuadd_|:1

neuadd_@:1

neuadd_D:0

neuadd_Fuzzy:0

neuadd_VEye:0

neuadd_VMotor:0

neuadd_Sti:0

neuadd_LMu:0

neuadd_Water:0

neuadd_Energy:0

neuadd_Ch:0

neuadd_ChMux:0

neuadd_ChSel:0

neuadd_Rnd:0

neuadd_Sin:0

neuadd_Delay:0

neuadd_Light:0

neuadd_Nn:0

neuadd_PIDP:0

neuadd_PIDV:0

neuadd_SeeLight:0

neuadd_SeeLight2:0

neuadd_Sf:0

neuadd_Thr:0

f0_nodel_tag:1

f0_nomod_tag:1

f0_p_new:5

f0_p_del:5

f0_p_swp:10

f0_p_pos:10

f0_p_mas:10

f0_p_frc:10

f0_p_ing:10

f0_p_asm:10

f0_j_new:5

f0_j_del:5

f0_j_stm:10

f0_j_stf:10

f0_j_rsf:10

f0_n_new:5
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f0_n_del:5

f0_n_prp:10

f0_c_new:5

f0_c_del:5

f0_c_wei:10

f1_xo_propor:0

f1_smX:0.05

f1_smJunct:0.02

f1_smComma:0.02

f1_smModif:0.1

f1_mut_exmod:EeAaMmSsIi

f1_nmNeu:0.05

f1_nmConn:0.1

f1_nmProp:0.1

f1_nmWei:1

f1_nmVal:0.05

f2_mutAddOper:0.4

f2_mutJointElem:0.33

f2_mutNeuroElem:0.33

f2_mutConnElem:0.33

f2_mutDelOper:0.1

f2_mutHandleOper:0.3

f2_mutPropOper:0.2

f3_mutSubstitution:0.6

f3_mutSubstPerChar:0.1

f3_mutDelIns:0.1

f3_mutDelInsPerChar:0.05

f3_mutDelInsLength:5

f3_mutDuplication:0.05

f3_mutTranslocation:0.15

f3_xovGeneTransfer:0.8

f3_xovCrossingOver:0.2

f4_mut_add:50

f4_mut_add_div:20

f4_mut_add_conn:15

f4_mut_add_neupar:5

f4_mut_add_rep:10

f4_mut_add_simp:50

f4_mut_del:20

f4_mut_mod:30

f7_mutAddChar:0.01

f7_mutAddGene:0.35

f7_mutReplaceChar:0.01

f7_mutDeleteChar:0.01

f7_mutReplaceGene:0.05

f7_mutDeleteGene:0.34

genkonw0:1

genkonw1:1

genkonw2:1

genkonw3:1

genkonw4:1

randinit:0.01
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nnoise:0.01

touchrange:1

bnoise_struct:0

bnoise_vel:0

ncl_N:1

ncl_Nu:1

ncl_G:1

ncl_T:1

ncl_S:1

ncl_*:1

ncl_|:1

ncl_@:1

ncl_D:1

ncl_Fuzzy:1

ncl_VEye:1

ncl_VMotor:1

ncl_Sti:1

ncl_LMu:1

ncl_Water:1

ncl_Energy:1

ncl_Ch:1

ncl_ChMux:1

ncl_ChSel:1

ncl_Rnd:1

ncl_Sin:1

ncl_Delay:1

ncl_Light:1

ncl_Nn:1

ncl_PIDP:1

ncl_PIDV:1

ncl_SeeLight:1

ncl_SeeLight2:1

ncl_Sf:1

ncl_Thr:1

simil_method:0

simil_parts:0

simil_partdeg:1

simil_neuro:0.5

symPosSteps:10

symAlphaSteps:20

symBetaSteps:20

minjoint:0

maxjoint:2

GenePool:

name:Genotypes

fitness:return 0.0+this.velocity*1.0;

fitfun:0

fitm:2

fitma:2

Population:
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name:Creatures

energy:1

death:1

nnsim:1

perfperiod:100

stabilperiod:100

killnostable:1000000

stabledist:0.01

enableperf:1

colmask:13

selfmask:65537

othermask:131073

bodysim:1

selfcol:0

em_stat:0

em_dyn:0

en_assim:0

Population:

name:Food

energy:1

death:1

nnsim:0

perfperiod:100

stabilperiod:100

killnostable:1000000

stabledist:0.01

enableperf:0

colmask:148

selfmask:131074

othermask:65538

bodysim:1

selfcol:0

em_stat:0

em_dyn:0

en_assim:0
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A.2 Specific Test Parameters

In general, the lengths of the tests were not held rigidly, but if speciation did not occur

within these timeframes the populations were usually abandoned. The following is a list

of any exceptions to the parameter list in the previous section, as well as a summary of

the experiment setups.

A.2.1 Ground Environment

ExpParams.feed/=2;

Ground targets are given half as many points to equalize fitness values.

A.2.2 LHF Environment

∀ ∈ Populations.group(1), Population.bodysim = 0;

By use of this parameter differentiation, the ‘floating’ targets of the LHF are created

A.2.3 Water Environment

World.wrldwat=3;

A.2.4 The Classical Scenario

The first test results, shown in Section 6.1, comprised an allopatric setup with 60 M5

robots evolving in both a ground environment and an LHF environment. Tests were run

for 50 million cycles.

A.2.5 Anagenesis and the Water Test

The water test from Section 6.3.1 used LHF and Water environments with M5 popula-

tions. The tests were run for 50 million cycles. The anagenesis test from Section 6.6 used



89

the data from the water evolved robots and compared it against their own ancestral M5

robot population. Comparisons were calculated for all 50 saved files.

A.2.6 Mutation Order

The mutation order test in Section 6.4 used two M5 populations both evolving in ground

target environments. The test was run for 200 million cycles.

A.2.7 Genetic Drift

The genetic drift test in Section 6.5 was performed with the M9 population composed of

25 robots (rather than 60) (see Section B.2 for details), both populations were evolved

in the LHF environments. The test concluded at 50 million cycles.

A.2.8 Non-Morphological

f1 smX:0

f1 smJunct:0

f1 smComma:0

f1 smModif:0

f1 mut exmod:EeRrLlAaCcFfMmSsIiQq

These commands prevent any mutations in structural elements and modifiers. These

parameters were used both for the test (see Section 6.7) as well as the generation of a

special initial population. This population was derived from the same M5 robot as the

other populations, except that all morphological features were kept constant in the 60

robots.
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A.2.9 Additional notes

The parameter file in the previous section includes some evolutionary algorithm data

such as

fitness:return 0.0+this.velocity*1.0;

However it should be noted that the built-in genetic algorithm for the Framsticks

systems is entirely bypassed in these tests so as to use the algorithm defined in Section

1.
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Appendix B

Appendix - Population information

B.1 M5

To generate the M5 robot, a copy of the s 7 genotype (evolved from scratch by Komosinski

of Framsticks) was additionally evolved for 2 billion cycles.

The full Genotype to create the M5 Population is

LLLLLLLLLLLLccccFMMsiMsia(, llcfiwX[9:13.271, 3:-4.322, in:0.886299,

9:2.635][|G:4.175, 1:-3.078, 0:-0.305, fo:0.04, 3:1.986, fo:0.04,

7:0.175], rlcMX[|G:-432.668, 6:2.508, 0:-3.463, in:0.8, fo:0.04]llllllc

cffmmmIqqX[6:1.811]RRccccccccFFFFqqX[T, r:1][N][G][@, -5:25.396,

p:0.867][@1:-2.185, -7:13.467, 1:-0.653, s:0.521][|0:-1.341, *:2.605])

The original s 7 genotype is

LLLLLLLLLccccFMM(, rllcccfmmqqX[|G:4.480, 1:-1.673, 0:2.229], rlcMX

[|G:-429.431, 1:3.365]lllcccffmmqXcqX[@1:2.968][|0:-0.785, *:2.886])

B.2 M9

To generate the M9 robot, a copy of the s 2 genotype (evolved from scratch by Komosinski

of Framsticks) was additionally evolved for 1.5 billion cycles.

The full Genotype to create the M9 Population is

lcffMMMIIIww(,,, ,, LLLLLLLLaFFFFFFFFMMMMMMMMX[*][*][@1:0.546,

7:-0.434, s:0.036, in:0.892368, si:-0.792136, si:2, in:0, in:0.8][|=:

3.615, 0:1.09, 7:0.142, s:0.099, si:2][N, 7:-13.323, -2:9.725, s:-0.342,

si:2, -1:-8.606]LMFLFMFFLLFMFFFFMFFLLLLLFFLFMMFFMLFFFFMMMFFMFMMFFLMFMMLFFLM
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MFMMMFFFLLMMFFFFMMMMMLFFLFFLFFLFMMLFFLMFLFFFMMFMLLFLLFFFLLLLFFFLLMMMMMM

FMFLMMMMMFFFFMMMFFMFMMFFMLMFFLLFMFFFFMFFLLFMFFMMMFFFLLFFMFFLMMFFLLLFFL

LLFFFFMMMFFFLLMMMMMMMMMLLLLLFFFLLLLLFFFMMMMMLMFLFMMMFLMMMMMFFFLLMMMFM

MMMMMMMFFMMMFFFLFMMMFFFFLLLLLFMMMFFMMMFMLFFFLLFMFFFFMFFMMMFFFLLFFMFFL

LLLFFFFMMMFFFLLMMMMMMMFMFFLLFMFFFFMFFMFFLLFMFFFFMMFFFFMMMMMMMFFMMMFF

LLFFLFFFFLLMMMMFMFFLMFLMFFLMFLFFFMFFMLFffFFLFFLFFLFMMLFFLMFLMMMMMFFFFMMM

FFLFMFFFFMLFFFFMFMMMMMLFLFFFFFLffmmIqWW(,llllllllffffffffmmmmmmmm

ssiQQX[T],rlllllllffffffffmmmmmmmmssiiQX[T][@1:-1.724, -5:-20.771, s:-0.073,

-4:21.059, si:2, fo:1, 1:2.631, -5:2.656, -5:7.015,0:3.131][|=:0.724145,

0:-7.056, -4:3.556, si:1.75916,-7:3.35][@1:-5.497, in:0.869808, in:0]),

rLacF SiiwFqL(LLLLLLLLFFFFFFFFMMMMMMMMIX[@1:-16.504, -7:7.982,

si:2,2:1.695][|=:3.615, 0:1.115, s:0,si:2][|=:0.832162, 0:-22.453, s:-0.618,

0:14.862, -5:-0.16, -8:-11.705,-10: -9.111,0:-18.096,-9:-7.763]))

The original s 2 genotype is

LLLLLLFFMMX[0:289.731][|0:0.350][@2:2.543, !:1.000, 2:-0.711]X[1:0.628]

[0:-2.267, 3:-1.828]X[@1:0.955][@1:1.964][@1:1.193][@1:1.193][1:1.788]

LLLLLLLLLFFFFMMMMMMX[@1:0.643][|=:3.615, 0:2.818]
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Appendix C

Appendix - Additional Data Sets

Some additional results. Many, if not most tests, did not result in effective/timely spe-

ciation. No effort has been made to detail the statistical likelihood of speciation - it

appears to depend heavily on a number of factors including environment and genotype.

Figure C.1: Another basic allopatry test using the M5 population
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Figure C.2: Another non-morphological test using the M5 population

Figure C.3: Another mutation order test using the M5 population
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