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Chapter 1

Introduction

1.1 Motivations

The Framsticks system is primarily an environment for simulation of evolution of arti-

�cial life, but it can also be employed to perform computations in general [KU96], [KU09].

Using Framsticks, one can de�ne parameters like evolution goal or environment conditions

and then observe the evolution of complex life-like structures. It is also possible to express

more sophisticated elements, like arti�cial neuron logic, in a dedicated scripting language:

Framscript.

The core element of the Framsticks system is a virtual machine that controls the be-

haviour of the system, including genetics, simulation, and various algorithmic issues.The

virtual machine has one important characteristic, which has started to become a major

limitation to the possible experimentation scenarios: its process �ow cannot be easily

distributed. In order to overcome this limitation, a notion of distributed simulation envi-

ronments or experiments � using multiple Framsticks virtual machines as computational

nodes � was devised. The original simulation would be then extended with a controlling

entity, exchanging information with the computational nodes over the Framsticks network

protocol [FNP13]. This thesis strives to provide such an extension.

1.2 Scope of this thesis

For the case of the thesis a rich set of Java source code has been developed, enabling

easy creation of various experiments in the Framsticks environment and providing a Graph-

ical User Interface to those experiments, as well as to already existing Framsticks native

simulators. This set will be referred to as Framsticks Java Framework throughout the

thesis (FJF in short). Using FJF, a prototype experiments has been conducted in order to

prove solution's overall correctness and provide good starting point for future users using

FJF to build actual, probably more sophisticated experiments.
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1.3 Thesis structure

Chapter 2 will introduce the Framsticks system in more details and present main goals

for the Framsticks Java Framework.

Chapter 3 will discuss several aspects of the Java programming language that were

found especially important for the �nal form of the FJF.

Chapter 4 will present the development and testing environment by discussing several

tools that have proved to be helpful during the development process of FJF.

The following chapters will concentrate on the FJF itself.

Chapter 5, which constitutes the core of this thesis, will describe in details the devel-

oped software solution. Each package will be presented, with an emphasis laid down on

important design aspects and non-trivial implementation details. All important elements

of the framework will be described and their place in the system as a whole will be shown.

Finally, Chapter 6 will present the top-most layer of the FJF, which concentrates

strictly on the notion of the distributed experiment de�nition and rests upon all software

elements described in the previous chapter. Features of this layer will be demonstrated

on two examples, of which the �rst one is completely synthetic, and the second one is an

extension to the standard Framsticks experiment.

Chapter 7 contains a summary of work the that has been done during the development

of the FJF.
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Chapter 2

Goals of the Framsticks Java

Framework

This chapter will present several main goals of the software solution being developed in

the scope of this work, namely the Framsticks Java Framework. Beside the presented goals,

the FJF should strive to provide an extensible base for other Framsticks applications.

The FJF should not be designed to be a self-contained solution, but instead to work

closely with the Framsticks virtual machine in its server con�guration. Because of that

fact, the names of Framsticks virtual machine and Framsticks server will be used inter-

changeably. This Framsticks server, used as a computational node by the FJF, will also

be referred to as native Framsticks server, in opposition to the Java-based servers hosted

by FJF.

2.1 Supporting di�erent kind of experiments

Although the Framsticks system is primarily used for evolution simulation, it is not

limited to those applications. One of important project assumptions behind the FJF, is

not to limit the experimenter only to develop evolution-based experiments, but to give an

extensible and con�gurable tool, adjustable to virtually any kind of experiment possible in

the original Framsticks environment. Because of that, references to the arti�cial evolution

will be rather rare throughout the following document.

2.2 Supporting the netload/netsave communication scheme

The Framsticks server publishes an interface to save and load experiment state, through

netsave and netload procedures available over the network protocol under the /simulator

path. In order to support experiment state persistence, an experiment de�nition must

implement onExpLoad and onExpSave functions (in Framscript language). The interface

does not enforce any particular format of data sent over, but typically experiment state is

encoded in Framsticks �le format. The approach presented above, which will be referred
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to as the netload/netsave interface, up until now was used only for checkpointing or

debugging of experiments involving only a single Framsticks server, and whole experiment

logic was expressed in the experiment de�nition script.

The FJF should support a more sophisticated approach, where the expdef script would

only include de�nition of operations to be conducted by a single node, while policies of work

distribution and results aggregation should be expressible in possibly short snippets of Java

code, which would be executed in the FJF experiment environment. The experimenter

should be given a possibility of focusing only on the aspects speci�c to one's experiment,

leaving things like communication and experiment infrastructure management to the FJF,

and reusing common building blocks from other experiments.

2.3 Infrastructure management

The management module should provide means to connect to existing native Framsticks

servers, as well as to start new instances on the as-needed basis, which each such server

considered constituting a single computational node. The computational servers should be

runnable not only locally, but also on remote hosts.

2.4 Experiment state monitoring and controlling

In order to give experimenter a full insight into the conducted experiment, the FJF

should provide means to publish arbitrary properties and functionalities of the de�ned

experiment, which should be made accessible over the same network protocol, as the one

used by native Framsticks server. Any existing client implementing the Framsticks network

protocol would thus be enabled to access and control not only the native Framsticks servers

but also the experiment itself. The FJF should also provide a compatible client in form

of full-featured GUI (presented below), as well as a library providing low-level interface

embeddable in an arbitrary Java application.

2.5 Graphical User Interface

In order to facilitate the experiment management, a specially crafted Graphical User

Interface should be developed. The GUI front-end should present a browsable tree struc-

ture of a remote server, which should be resolved only as needed. Each remote object

should be presented as a list of possibly modi�able attributes, callable procedures and

events, for which user be able to subscribe. Users should also be given a possibility to

connect to multiple servers, both native and FJF ones, from a single Framsticks GUI. It

should also be possible to host experiment environment directly in the GUI (not using

network layer between Java based entities).
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2.6 Clear and layered architecture

One of the important goals of the FJF is to develop a well-established, clean and layered

architecture. All packages should be designed with extensibility in mind and to be reusable

in any Java application existing in the Framsticks system. The lower-layer packages, like

those providing parsing functionalities or mirroring the Framsticks object model should

have no elements speci�c to the main goal of distributed experiments.

All upper-layers should represent an asynchronous processing paradigm, which is dic-

tated mostly by network communication with remote servers, but in a minor degree also

by GUI interactions.

All main functional entities should be designed to be run inside of the FJF environment,

and possibly inside other entities.
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Chapter 3

Java

In the following chapter, several aspects of Java programming language, which played an

important role in presented software solution, will be introduced and brie�y described.

Following, two programming notions, which may be encountered in several key places

throughout the project, will be discussed (immutability and �uent interfaces). Throughout

the chapter, some references or minor comparisons with two other languages will be held,

namely C++ and C#.

3.1 Java Re�ection

The Reflection API of Java language allows to inspect code, including class inheri-

tance, �elds and methods, during run-time. One of important advantages of using re�ection

is the ability to easily provide extension points to the application that are �lled or con-

�gured during run-time, for example by using an instance of class which name was read

from a con�guration �le, or to invoke a method speci�ed by name by the end-user. Such

capabilities are used extensively throughout the FJF, in almost all its packages.

Using re�ection, however, needs some amount of consideration, since it implies perfor-

mance penalties and security issues, starting with the most trivial situations like modi�-

cation of object's private �elds. The re�ection is available since version 1.1 of the JDK.

3.2 Java Annotations

Java annotations allows the programmer to mark various language entities (classes,

�elds, methods) with an additional information, which can be later queried to determine

application behaviour. Beside the built-in annotations (like @Deprecated or @Override),

it is possible to specify custom annotation types. Those custom annotations may de�ne

attributes of a limited set of Java types. Annotations are commonly used by various Java

frameworks to de�ne behaviour that would otherwise need to be expressed in external

resources. One possible example of application heavily depending on the annotations are

database-related frameworks, which use annotations to associate given Java class with a
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speci�c database table or class �elds with the table columns. The FJF is another example

of such application, where annotations are used to de�ne the relations between Java classes

and Framsticks types.

Support for annotations in the Java language started with version 1.5 of the JDK.

3.3 Weak references

Their purpose is to hold a reference to the object (called referent), but not to prevent it

from being gathered by garbage collector. The obvious implication of this semantic is that

dereferencing operation is not always possible - once the last regular (or strong) reference

to the object is lost, the dereferencing operation returns null. One of applications of

weak references are the event handlers (or listeners), that prove themselves problematic

especially in dynamic GUI applications. This situation is one of counter examples to the

popular misconception that garbage collectors in managed programming languages (like

Java, C#, etc.) protect against memory leaks. The typical counterparts of Java java.

lang.ref.WeakReference class, are: std::weak_ptr in C++ and System.WeakReference

in C#.

Weak references are available in Java language since version 1.2.

3.4 Generics

Generics are an important feature of Java programming language, since they allow

to write more type-safe code and to omit unnecessary casts. A popular misconception,

partially resulting from similar wording, is that they are similar to C++ templates. It may

be disputed, however, that they have more di�erences than they have in common. C++

templates system is much more complex (and even Turing complete). C++ template

arguments can be types, constants, function addresses and even other templates, while

in Java only types can be the arguments of generic entity (class, interface, method or

constructor). In Java, generics are a compile-time feature, which is not directly available

in run-time due to process called type erasure.

It may be considered interesting, that simple usage of generics leaves much less infor-

mation regarding type in run-time, that it is the case of C++. However, when combined

with the Class<T> idiom, it gives much more information than C++ because of re�ection

subsystem.

Generics were introduced in version 1.5 of the language.

public interface WorkPackage<S extends WorkPackage<S>> extends NetFile {

...

S getRemainder(S result);

}
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...

public class PrimePackage implements WorkPackage<PrimePackage> {

...

@Override

public PrimePackage getRemainder(PrimePackage result) {

...

}

}

Listing 3.1: A non-trivial real-world example.

3.5 Anonymous inner classes

The notion critical the Framsticks Java Framework code readability is the anonymous

inner class (introduced with version 1.1 of the Java language), that is typically used in

asynchronous applications. Because of the inherently asynchronous nature of the FJF

(expressed in section 2.6), they can be found throughout the framework.

Anonymous inner classes may be seen as an extension of regular inner classes. Instances

of both class types are bound with a speci�c instance of outer class, hence they have trans-

parent access to all �elds and methods of the given instance creating them. Anonymous

classes are typically used to implement a callback or listener interface and are constructed

in speci�c context, possibly capturing some values from enclosing scope. Because of their

limited usage, they do not need to be named by programmer � they are given a name by

Java compiler.

Listing 3.2 presents a non-trivial usage example that can be found in FJF, where

anonymous classes are nested.

class NetLoadSaveLogic {

...

protected void issueNetloadIfReady(ListChange change,

final Simulator simulator) {

if (!change.hasHint("ready")) {

return;

}

netload(simulator, new Future<NF>(simulator) {

@Override

protected void result(final NF net) {
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if (net == null) {

log.debug("no file for upload provided");

return;

}

simulator.netload(net, new Future<Object>(this) {

@Override

protected void result(Object result) {

NetLoadSaveLogic.this.messages.info("netload",

"done " + net.getShortDescription());

log.debug("netload of {} done",

net.getShortDescription());

simulator.start();

}

});

}

});

}

}

Listing 3.2: Example of anonymous classes usage.

Several important aspects may be noticed here:

� the simulator variable must me marked as final to be accessible from the callback,

� constructors of the abstract class Future can be used to create the anonymous sub-

class,

� the this argument passed into the constructor of the nested callback refers to the

instance of enclosing callback, not to the instance of enclosing NetLoadSaveLogic

� because of above, reference to the messages �eld of NetLoadSaveLogic must be

referenced using following syntax: NetLoadSaveLogic.this.messages

Although anonymous classes may be perceived as hard to read, it has to be noted

that the alternative would need explicit classes implemented outside of the only scope in

which they are meant to be used, with context arguments (like simulator in the example)

doubled as �elds of such hypothetical class.

3.6 Immutable objects

The notion of immutable objects is used throughout the Java programming language,

and it is has several application in the Framsticks Java Framework as well. The object

is said to be immutable, if it does not change its logical state after construction. The
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most simple and often occurring example of such class is the java.lang.String type. All

String methods, like substr or concat never change the object itself, but return new

instances of String class. This allows to safely pass instances of type String throughout

the program, including between threads. Extended use of immutable types allows to skip

otherwise necessary synchronization and locking.

This approach is used in case of com.framsticks.structure.Path class (which will be

presented more closely in 5.6), which never changes its state. Operations like appending

or removal of path's elements always e�ectively create new Path instance.

Another, not so obvious example of immutable types are boxing classes, like Integer,

Double, etc. In scope of FJF, similar to them is Param class with all its descendants, which

provides meta information for a single value in FJF, and may also be used as a �eld in

enclosing FramsClass. FramsClass is also immutable and is semantically a counterpart to

the (also immutable) java.lang.Class class. (Both Param and FramsClass are available

in package com.framsticks.params, which will be presented in 5.2).
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Chapter 4

Development environment

In this section several important software elements constituting the development envi-

ronment will be brie�y presented and their impact on the development process and quality

of code will be discussed.

4.1 Maven

Maven [MAV13] is a project management tool implementing concept of project object

model.

Using Maven gives several pro�ts:

� dependencies on external libraries are easily expressible, and are automatically re-

solved during build time,

� project description is IDE-agnostic: instead of binding project to a speci�c devel-

opment environment, developer may generate project �les adequate for the IDE of

preference using plugins.

� a variety of plugins exist supporting testing and code analysis, either by themselves

or by interfacing external tools.

Listing 4.1 presents some commonly used Maven commands.

# run find bugs

mvn findbugs:findbugs

# execute the default configuration

mvn exec:exec

# execute all test for the project

mvn test #test

# prepare project files for an IDE

man eclipse:eclipse
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Listing 4.1: Various Maven commands.

However, beside many unquestionable advantages, some particularly uncomfortable

drawbacks were identi�ed, like lack of out-of-the-box support for creation of simple exe-

cutable �les wrapping the JVM invocation and designated for distribution to the end-user.

4.2 FindBugs

FindBugs [FIN13] is a static analysis tool for the Java programming language that

proved itself very useful during development of Framsticks Java Framework. FindBugs

integrates well with Maven. Below are presented several issues found by FindBugs tool

in the FJF.

RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE Indicates su-

per�uous checks for null as the returned value, if the method is marked with @Nonnull

annotation.

public @Nonnull TreePath convertToTreePath(Path path) {

// no other return statements

return new TreePath(accumulator.toArray());

}

final TreePath treeListPath = convertToTreePath(listPath);

if (treeListPath == null) {

throw new FramsticksException()

.msg("path was not fully converted")

.arg("path", listPath);

}

Listing 4.2: Redundant null check.

NN_NAKED_NOTIFY Indicates places where Object.wait(), Object.notify()

are done without any state change accompanying those calls (like setting some �ag telling

that condition is now valid).

HE_EQUALS_USE_HASHCODE Problems arising when objects of class overrid-

ing Object.equals() and not overriding Object.hashCode()method are particularly hard

to track down, since they silently break some assumptions taken by other Java entities (like

java.util.HashMap).
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NP_LOAD_OF_KNOWN_NULL_VALUE Listing 4.3 presents an issue found

with FindBugs. The javaClass input parameter was used an iterator in while loop

(�nishing that loop with null value), but is used again a key to the setsCache map,

clearly in the original meaning (as it was passed to the function). In the presented example

the issue did not manifest itself in any obvious way, since null was used as a key in Map

serving as a cache, rendering that cache unusable. It is worth to mention a good practice

of specifying input parameters to methods as final values, i.e. not changing values during

the method execution, since it is a typical situation, and it would prevent the presented

mistake.

public static Set getAllCandidates(Class<?> javaClass)

throws ConstructionException {

Set result = setsCache.get(javaClass);

if (result != null) {

return result;

}

List<Class<?>> javaClasses = new LinkedList<>();

while (javaClass != null) {

javaClasses.add(0, javaClass);

javaClass = javaClass.getSuperclass();

}

result = new Set(...);

/* the main method logic filling up the result instance */

setsCache.put(javaClass, result);

return result;

}

Listing 4.3: Load of null value.

4.3 TestNG

@Test

public void buildModel() {

...

assertThat(model.getParts().get(2).getPosition()

.sub(new Point3d(2.27236, -0.0792596, -0.958924)).length()

).describedAs("position error").isLessThan(0.0001);

}

Listing 4.4: Fluent assertions in TestNG.
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TestNG is a testing framework that was chosen for the Framsticks Java Framework.

Initially, JUnit was used; migration to a di�erent framework was dictated by several

issues:

� TestNG supports data-driven testing [TES13] (an example from FJF is presented

in listing 4.5),

� TestNG allows to express dependencies between tests,

� TestNG provides expressive �uent interface for assertions (presented in 4.4).

@Test

public class RequestTest extends TestConfiguration {

@Test(dataProvider = "requests")

public void parsingAndPrintingRequests(

Class<? extends Request> requestClass,

String line) {

Pair<CharSequence, CharSequence> pair = Request.takeIdentifier(line);

Request request = Request.parse(pair.first, pair.second);

assertThat(request).isInstanceOf(requestClass);

assertThat(request.stringRepresentation()).isEqualTo(line);

}

@DataProvider

public Object[][] requests() {

return new Object[][] {

{ CallRequest.class,

"call /object function first second \"thi rd\""},

{ GetRequest.class, "get /test"},

{ GetRequest.class, "get /test one_field"},

{ GetRequest.class, "get /test first_field,second_field"},

...

};

}

}

Listing 4.5: Data-driven testing in TestNG.

The simplicity of the approach to data-driven testing found in TestNG encourages

developers to avoid the common testing anti-pattern of creating multiple testing methods

with only some parameters changing.
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4.3.1 TestNG drawbacks

Although TestNG proved to be a good choice, several drawbacks were identi�ed. One

of them is that the order of calling methods annotated with @BeforeClass, @AfterClass,

@BeforeMethod, @AfterMethod is unspeci�ed, which renders usage of those methods un-

stable, thus unusable, in situations involving test classes constituting some inheritance

hierarchy.

4.3.2 Testing multi-threaded application

Although very useful, TestNG needed to be customized for the Framsticks Java Frame-

work speci�cs of inherently multi-threaded environment. Several tests, like communica-

tion and hosting tests, included situations where spawning user threads was needed. If

any exception was thrown in those threads, in particular AssertionError raised by failed

TestNG assertion, it was propagated up to the enclosing java.lang.Thread, where it was

handled by the default thread exception handling routine, resulting in mere printing stack

trace and �nishing thread, hence no failing to instrumented test.

The JDK class java.lang.Thread exposes a facility to handle such situations: it

allows to register an instance of class implementing Thread.UncaughtExceptionHandler

interface. If an exception is not caught earlier, it is passed to that object. Although

supported out-of-the-box by JDK, this approach proved to be not suitable for the testing

purposes of FJF, because it is being executed completely outside of the FJF stack, which

prevents proper threads joining.

For this reason, a special routine was added to the TestConfiguration class (a utility

base class for all test classes in FJF). Method failOnException() constructed on the �y a

special ExceptionHandlerInstance, that remembers handled exception (possibly encloses

in AssertionError) and pushes it to the queue of test assertions. That queue is checked

after each @Test annotated method returns, which happens always in the main thread

monitored by the TestNG framework, and if any AssertionError is found, it is rethrown

and then caught by the TestNG, thus failing the test.

4.4 GUI testing � FEST

Thorough unit testing of various Framsticks Java Framework elements allowed more

e�ective development cycle, since various regressions were identi�ed immediately after

introduction. Using TestNG it was relatively easy � keeping in mind problem described

in the previous paragraph � to integrate tests of the solution as a whole (for example tests

including connecting to an experiment hosted in the framework itself).

Still, one important part of the solution remained untested, namely the Graphical User

Interface. GUIs are especially time consuming in case of manual tests; at the same time

such tests may be very useful as integration tests, since any problem in a lower layer will
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probably manifest itself somehow in the �nal layer (abstracting from where the problem

lies). Previously mentioned unit tests may only detect regressions in relatively small parts

of the system, whereas GUI tests may detect regressions resulting from broken contracts

between solution's subsystems interfaces.

FJF uses Swing as a GUI framework. Research regarding testing Swing applications

revealed several possible solutions, including Jemmy, UISpec4j and FEST [FES13].

From those FEST was chosen because of its convenient �uent interface and supported

integration with TestNG. FEST allowed for instrumenting GUI with operations like:

� click cursor on the speci�ed button,

� choose speci�ed item from the tree component,

� enter prede�ned text into the speci�ed text box.

After bringing GUI to the wanted state, assertions may be tested against:

� proper values in speci�ed components,

� their visibility, etc.

Using FEST freed programmer from the cumbersome and tedious repeating the same

GUI operations over and over again. Still, during the test run, programmer was unable

to perform tasks more productive than watching the test run, since obviously GUI testing

needed to use screen, instrument mouse and keyboard. This drawback was dealt with using

the Xvfb application [XVF13], that provides a virtual frame bu�er (in the X windowing

system). Using Xvfb it is possible to run GUI tests in background as any other tests. It

is worth noting that Xvfb may also be used to run such tests on a remote server lacking

graphic card.

xvfb-run -s '-screen 0 1920x1020x24' maven test

Listing 4.6: Command to run all tests in virtual frame bu�er of HD resolution.
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Figure 4.1: Packages relations.
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Chapter 5

Framsticks Java Framework

5.1 Packages

The Framsticks Java Framework is organised into over a dozen packages of di�erent

character. All of those subpackages are direct or indirect subpackages of com.framsticks.

Figure 4.1 presents dependencies between packages, while table 5.1 most important classes

for each package. Special care was taken so that dependency graph was a in fact a tree,

i.e. there are no cyclic dependencies. Although Java language does not impose such a

constraint, it makes the packages and classes layout in the project more intuitive and easily

understandable.

It is clearly visible that the params package constitutes a root package in the de-

pendency tree, while the packages like gui or experiment are the leaf packages, �nally

aggregating functionalities spread throughout the FJF.

Main packages, containing the most speci�c functionalities, are: params, communication,

structure, hosting, remote, gui and experiment. They will be presented in more details

in the following sections.

Package util is not presented in 4.1, it contains various utilities not speci�c to the

FJF (it can be seen as a extension to java.util standard package).

5.2 Params

It may be seen in �gure 4.1, that the package com.framsticks.params constitutes a

foundation for all other Framsticks Java Framework elements. The following section will

con�rm its importance to the solution as a whole. Moreover, by referring to the upper

layer packages, many implementation decisions, that would otherwise remain unclear, will

be justi�ed.

This package's importance comes mainly from the fact that it implements the interface

with the Framsticks server, i.e. the parameters entity description. That description is used

throughout the Framsticks system to encode virtually all entities, including genotypes,

creatures, experiment de�nitions and settings.
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Package Major classes

params Param, FramsClass, Access

communication Request, Connection

experiment Simulator, Experiment

gui Browser, Frame, Panel, Control

hosting Server, Cli

model Genotype, Creature

parsers MultiParamLoader, XmlLoader

remote RemoteTree

running FramsServer

structure Tree, Path

Table 5.1: Major classes.

Package com.framsticks.params contains following important elements:

� FramsClass class representing Framsticks type (a counterpart to java.lang.Class),

� Param class and its extensions describing various Framsticks type members,

� Access class and its extensions providing uni�ed and simple access to object in-

stances,

� annotations used to mark Java classes meant to be used as direct storage for data

downloaded from Framsticks server (like com.framsticks.model.Part).

5.2.1 Annotations

Annotations (from package com.framsticks.params.annotations) are also used to

describe Java classes that do not have their counterparts in the Framsticks server, but are

used to build distributed evolution experiments. Those annotations allow to automatically

read their con�guration and set experiment up or to prepare GUI (this kind of usage will

be discussed in section 5.3 regarding parsers).

There are two main annotations: FramsClassAnnotation and ParamAnnotation

ParamAnnotation This annotation is used to annotate Java class members: both

�elds and methods. The process of inferring Framsticks type for most members is straight-

forward. Fields can be used directly (possibly circumventing the Java non-public) access

descriptors) or through access methods (getters and setters), which are considered as such if

are following Java naming conventions. They can also be marked explicitly as the interface

to a �eld, by using ParamAnnotation's paramType attribute. Methods are also converted

automatically, including their formal parameters types and the return value type.
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One of Framsticks parameter types, namely the event type (represented in FJF by

EventParam), is not directly expressible in the Java programming language. In this case

the conversion proceeds in a way similar to the one of access methods discovery � it assumes

two things for these methods:

� methods naming convention (addEventListener and removeEventListener),

� their argument type: EventListener<Argument> interface.

Of course methods can also be explicitly marked as the ones providing an interface to the

event.

FramsClassAnnotation While previous annotation was used to annotate class mem-

bers, FramsClassAnnotation is used to annotate an arbitrary Java class as FJF-compatible;

only classes marked as such are scanned for members annotated with ParamAnnotation.

Furthermore, only classes marked with FramsClassAnnotation can be used as storage for

ReflectionAccess (presented closely in the following part).

The declaration of FramsClassAnnotation is presented in listing 5.1 together with a

simple usage example.

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface FramsClassAnnotation {

String name() default "";

String id() default "";

String[] order() default {};

Class<?>[] register() default {};

String[] registerFromInfo() default {};

}

...

@FramsClassAnnotation(id = "p")

public class Part {

...

}

Listing 5.1: FramsClassAnnotation.

It is worth to note that the presented annotation is also annotated with two important

pieces of information: �rst de�ning that the annotation should be available in run-time
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(through Reflection API), and the second specifying that the FramsClassAnnotation

can only be used to annotate Java types.

Beside the obvious attributes like id and name, FramsClassAnnotation also provides

attribute order, which needs to be used, if the ordering of parameters in the FramsClass

has to be deterministic, since the Java re�ection layer does ensure any particular ordering

of the members found in java.lang.Class. In practice that ordering is important because

of only one aspect: presentation in user interface, where a layout stable accross FJF

invocations is desirable. That ordering is mainly useful with classes designed to viewed in

GUI.

5.2.2 Param hierarchy

Param class is a root class for all params available in the Framsticks system. Param

objects are used to represent �elds in classes as well as collections' elements. They are

lightweight entities and are not bound to any particular instances of FramsClass or Access

classes. For example, ListAccesses create such Param objects on the �y, based on the

underlying collection being accessed.

Figure 5.1 presents a complete hierarchy of all its descendants. All classes extending

Param are immutable, which allows to safely pass them in multi-threaded environment.

The labels above inheritance arrows designates the type that used as the parameter to the

generic superclass (for example: BooleanParam extends PrimitiveParam<Boolean>).

PrimitiveParam
T

NumberParam
T

ListParam

ValueParam

CompositeParam

Param

BooleanParam

ProcedureParam

FloatParam

DecimalParam

UniversalParam

ArrayListParam

ObjectParam

ColorParam

EventParam

EnumParam

BinaryParam

StringParam

UniqueListParam

Boolean

Double

Integer

Object

Object

Integer

String

T

Figure 5.1: Param class hierarchy.

Presented hierarchy is very important and useful, since it allows to narrow down the ac-

cepted argument type from Param to its subclass in many places throughout the Framsticks
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Java Framework:

� com.framsticks.gui.controls.ValueControl holds only params extending

PrimitiveParam,

� com.framsticks.gui.tree.TreeNode holds only params extending

CompositeParam,

� only params extending PrimitiveParam<?> are printed/parsed directly by typical

serialization algorithms,

It also allows to easily �lter out Params based on their type, which is presented in listing

5.2.

Access access = bindAccess(path);

for (EventParam eventParam

: Containers.filterInstanceof(access.getParams(), EventParam.class)) {

/* register for event */

}

Listing 5.2: instanceof-based �ltering.

Table 5.2 presents mapping between two types representations: Framsticks string repre-

sentation and FJF class representation. Conversion from textual representation to a Param

instance is enclosed in ParamBuilder (described below), while the conversion in opposite

direction is done by the Params types themselves.

Framsticks type FJF type

d DecimalParam

d 0 1 BooleanParam

d 0 2 ~Add~Remove~Modify EnumParam

f FloatParam

s StringParam

p ProcedureParam

e EventParam

x UniversalParam

o Creature ObjectParam

l Joint ArrayListParam

l Genotype uid UniqueListParam

Table 5.2: Param types
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5.2.3 ParamBuilder

Instance of Param subclasses are not constructed directly, instead a special class com.

framsticks.params.ParamBuilder is used. The relation between Param and ParamBuilder

is exactly the same as between String and StringBuilder; similarly to StringBuilder

it allows Param type to be an immutable type. ParamBuilder is also used during parsing

prop: sections of Framsticks classes descriptions, where the type of Param is known only

after reading �eld type:; ParamBuilder allows to store values of all other �elds and at

the end construct actual Param instance of appropriate type deduced as it shown in table

5.2. Another advantage of ParamBuilder is its convenient �uent interface, which allows

to build up Param instances in concise manner (shown in listing 5.3) by referring only to

those Param �elds that are actually needed. Once all parameters that are di�erent from the

default values are given, the call to method finish() is issued, which �nally constructs

the new instance of adequate Param's subclass. Single ParamBuilder can be reused to

build another Param instances, possibly changing only a subset of parameters; this ability

is used as an optimization by ListAccess types to setup parameters common to all list's

elements beforehand.

Param param = Param.build().id("simi")

.group(1)

.flags(READONLY | DONTSAVE)

.name("Similarity")

.type("f")

.finish();

Listing 5.3: Building Param instance.

5.2.4 FramsClass

It was stated before that com.framsticks.params.FramsClass constitutes an analogy

to java.lang.Class; it is also immutable. It is used as named container for Params, which

can be grouped into named groups; it exposes an interface to access stored Params by

number or by their identi�er. FramsClass can be build in tree ways presented below.

Building manually Similarly to Param and ParamBuilder relation, a special builder

class for FramsClass exists, namely FramsClassBuilder. It also provides a �uent inter-

face, allowing to add new Params, set up groups and other attributes in a concise manner.

FramsClassBuilder is also used internally by the following methods of FramsClass build-

ing.

Building from textual representation FramsClass instance can be built automati-

cally from textual representation returned by the Framsticks server.
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Both FramsClassBuilder and ParamBuilder are annotated with FJF annotations,

thanks to which no routines speci�c for the loading of FramsClass exist: FramsClasses

can be loaded using generic MultiParamLoader (described in section 5.3) with default

con�guration. The use case of loading object of type FramsClass is presented as an example

in section 5.3 regarding parsers.

Building from Annotations The most sophisticated way of building a FramsClass is

an automated conversion from java.lang.Class. The object of type Class, representing a

speci�c Java class annotated with FramsClassAnnotation is scanned for members (�elds,

methods and events), annotated with ParamAnnotation. In most situations a parameter-

less annotation in su�cient, parameters have to be given explicitly only if intended values

are to be di�erent from the ones automatically derived based on adopted convention.

First approach to the problem of building FramsClass out of Java classes used static

methods accepting a special builder, which was �lled with references to methods and

�elds. The adoption of annotations-based solution allowed for a more concise, readable and

standard way of expressing this semantics; it also has the advantage of clearly decoupling

the data (here annotations) from the algorithm (here process of building FramsClass).

Thanks to FramsClass immutability and clearly functional algorithm of conversion (it

has no dependency on program state), instance re�ecting a given Java class, once created,

can be cached by the FramsClassBuilder and reused for all following conversion requests.

A typical use case for this approach is the hosting scenario (presented in 5.8), in which

data structure expressed in native Java classes (like the Experiment and Simulator), is

re�ected into the FramsClass representation. It is then transmitted to the remote client

in response to info requests, where it is interpreted using previously described method,

and allows building a shadowing tree structure on the client side.

Another typical use case occurs at the client side, where a regular Java class can

be used to store data received from server instead of the default approach using generic

PropertiesObject � this approach is described more closely in section 5.10.

5.2.5 Accessing values

In FJF data can be stored in several composite types:

� PropertiesObject for objects of type not known beforehand,

� java.util.List for simple lists (e.g. l Joint),

� java.util.Map for uniquely identi�ed lists (e.g. l Creature uid),

� any regular Java class annotated with FramsClassAnnotation.

To allow a uniform access to members of those composite types, a special layer of ac-

cess objects was devised. The root of access classes hierarchy (shown in the 5.2) is the
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com.framsticks.params.Access interface, which is most commonly referred to through-

out the FJF. Access interface declares means of getting and setting �elds in a type-

safe manner, calling methods and registering to events. Interfaces ObjectAccess and

ListAccess are extensions to the Access interface and are used throughout the FJF as

a type-based distinction between accesses to simple objects and accesses to lists, whilst

SimpleAbstractAccess and SimpleListAccess are considered implementation speci�c,

and should not be referred to outside the params package.

Access

SimpleAbstractAccess

ObjectAccess ListAccess

ReflectionAccess PropertiesAccess

SimpleListAccess

ArrayListAccess UniqueListAccess

List
?

Map
String, ?

? extends Object PropertiesObject

Figure 5.2: Accesses class hierarchy.

ObjectAccess and ListAccess There are two important behavioural di�erences be-

tween these access methods:

� the former contains heterogeneous elements, both primitives (PrimitiveParam) and

composites (CompositeParam), while objects wrapped with the latter contain a set

of objects of homogeneous type;

� the number and identi�ers of elements in ObjectAccess are constant for a given

FramsClass, while in the case of ListAccess it varies throughout the lifetime of the

accessed list object.

Because of the presented di�erences between ObjectAccess and ListAccess, while the

former uses Params directly from the stored FramsClass, ListAccess synthesises Param

instances only on demand and stores a pre�lled ParamBuilder internally.
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Re�ectionAccess This way of accessing object is especially important in hosting sce-

narios, where it allows an arbitrary complex tree structure, expressed with regular Java

classes, to be accessed directly and transparently by the FJF, a notable example of which

is the Experiment class (described in section 6). The ReflectionAccess class itself is

a lightweight class � all logics needed to bind members of FramsClass to members of

java.lang.Class (using ParamAnnotations) are hidden in the Backend class. Since mem-

ber binding involve searching through Class members and checking whether �elds' types

or function arguments are matching their counterparts in FramsClass, performing all those

operations each time ReflectionAccess is created would easily outweigh its actual func-

tionality (Access instances are rather short-lived objects). Because of immutability of both

FramsClass and java.lang.Class it is possible to execute those operations only once for

each pair of bound classes, and cache them for future use � the Backend itself is also an

immutable type.

Another speci�c aspect of ReflectionAccess is that it is currently the only Access that

actually supports the events registration. Methods of regular Java class are automatically

considered as the events registration interface, if they accept a single argument of type

EventListener<A> (where A designates the type of event argument) and their name starts

with �add� or �remove� pre�xes. Entry points not obeying that convention can be explicitly

marked as the events interface.

5.2.6 Registry

The Registry class is an important part of the params package, providing function-

ality similar to the one of java.lang.ClassLoader. Registry maintains a set of known

FramsClasses as well as their optional associations to Java Classes. It is used as a utility

entity in several key places, one them being the Tree instances (presented closely in section

5.6).

5.3 Parsing

This section will present approaches to parsing two di�erent �le formats used by the

FJF: Framsticks �le format and XML.

5.3.1 Framsticks �le format

The Framsticks the main data serialisation format, that is used throughout the Fram-

sticks system for following purposes:

� experiment de�nitions,

� experiment states,

� object serialization,
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� class description.

Content described by this format can be found in regular �les (typically with extensions

*.expdef for experiment de�nitions or *.epxt for experiment state), as well as in data

sent over network protocol by the native Framsticks server in response to get and info

requests (where it is delimited by the file and eof keywords). An example of the data

encoded is Framsticks �le format is included in listing 5.4, presenting part of response for

the info /simulator request.

class:

id:Simulator

prop:

id:print

name:print information message

type:p(s text)

flags:32

help:One argument: message to be printed

prop:

id:message

name:print message

type:p(s text,d level)

flags:32

help:~

The second argument can be:

-1 = debugging message

0 = information

1 = warning

2 = error

3 = critical error~

...

Listing 5.4: Example response for info request.

Most of the key aspects of the Framsticks �le format are visible in the presented ex-

ample:

� data is divided into object sections, each starting with the identi�er of the object's

type (here class and prop);

� each section consists of multiple key-value pairs, delimited with a colon;
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� value spans until end of line, unless it is enclosed in ~ characters, which delimits

multiline values;

� object section ends with an empty line.

It is important to notice, that the �le format itself does not specify the relations between

objects found in a given �le. In the previous example, prop objects are in fact representing

properties of class Simulator, but that relation is not expressible in the Framsticks �le

format.

MultiParamLoader For reading data encoded in the format presented above, FJF pro-

vides a single yet extensible parser, namely MultiParamLoader class. It allows to specify

actions, which should be taken upon speci�c events (like encountering unknown class type),

in terms of callbacks or processing breaks. It is designed to be a low-level reader used by

other entities implementing more speci�c reading schemes.

5.3.2 XML con�guration

The con�guration of FJF entities is expressed through an XML �le, however, Java classes

from FJF do not need to explicitly read con�guration given in this format. Instead, special

com.framsticks.parsing.XmlLoader class was devised, constituting a bridge between

class descriptions expressed through Java annotations (presented in section 5.2.1) and the

XML document object model.

To allow such automatic conversion from XML document into Java hierarchic class

structure, only few new elements needed to be added beside those implementing the core

functionality common to FJF and Framsticks native server:

� com.framsticks.params.annotations.AutoAppendAnnotation used to marks meth-

ods which will be used to associate instances resulting from reading the enclosed XML

node to the enclosing one (for example attach RemoteTree instance to the Browser

instance in the listing 5.5),

� com.framsticks.params.Builder interface used to mark classes which should not

be directly embedded in the enclosing scope, but instead an object of di�erent type

is emitted by the con�gured instance (an example is FramsClassBuilder).

<?xml version="1.0" encoding="UTF-8"?>

<Framsticks>

<import class="com.framsticks.gui.Browser" />

<import class="com.framsticks.remote.RemoteTree" />

<import class="com.framsticks.model.ModelPackage" />

<import class="com.framsticks.gui.table.ColumnsConfig" />

<Browser>
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<RemoteTree name="localhost:9009" address="localhost:9009">

<ModelPackage />

</RemoteTree>

<include resource="/common-columns.xml" />

</Browser>

</Framsticks>

Listing 5.5: XML con�guration example.

Listing 5.5 presents all major steps in XML con�guration processing scheme, they are

listed in order below:

� �rst, all classes speci�ed in <import/> elements are searched for using standard Java

Classpath searching mechanisms,

� an instance of Browser is created

� an instance of RemoteTree is created with name and remote server address read from

attributes,

� an instance of ModelPackage is created, which contains list of classes to be used for

direct storage,

� the ModelPackage instance is added to the enclosing RemoteTree which causes reg-

istration of classes like Genotype or MechJoint in the RemoteTree's class registry

(described in 5.2.6),

� the XML document referred to from the <include/> statement is read and processed

as it was embedded directly (in this example it contains a common con�guration of

columns to be displayed in the table views in GUI).

XmlLoader is also used to read the f0 scheme � that process is described in section

5.10.1 regarding the model package.

5.4 Multithreading

Presence of elements such as network communication and GUI in Framsticks Java

Framework forces it to be a heavily multi-threaded solution. Obviously, the �rst issue to

be resolved in such an environment is to protect against possible race conditions. Since the

tree is the central data structure in the FJF, a solution to that problem based on explicit

locking would be very tedious and susceptible to deadlocks.

Furthermore, an inherent asynchronous aspect of mentioned elements requires from the

FJF infrastructure a simple way of dispatching computations to be executed in the future,

may it be after other computation or communication is done, after some speci�ed time or

as soon as possible.

35



Package dispatching is a response to those problems � it implements a threading

model with support for asynchronous task dispatching.

5.4.1 Dispatcher

Because of conditions stated above, a solution based on task dispatchers was adopted.

Mentioned dispatchers are represented by interface Dispatcher presented in 5.14:

package com.framsticks.util.dispatching;

public interface Dispatcher<C> extends Joinable {

public boolean isActive();

public void dispatch(RunAt<? extends C> runnable);

}

Listing 5.6: Dispatcher.

Most entities implementing the Dispatcher interface are direct proxies to underlying

dispatchers (with an exception of RemoteTree, which is described in 5.6), with only three

classes actually managing assigned tasks:

� com.framsticks.util.dispatching.Thread which enriches java.lang.Thread with

a task queue,

� com.framsticks.gui.SwingDispatcher which encloses

javax.swing.SwingUtilities,

� a trivial case of com.framsticks.util.dispatching.AtOnceDispatcher that exe-

cutes assigned task immediately, and is considered always active.

Most operations regarding Tree instances are only allowed to run in that instance's

context; also almost all GUI operations are executable only from the speci�ed GUI context

(being in fact the Swing dispatcher thread).

Static context con�nement As it can be seen in listing 5.14, Dispatcher interface

is a generic interface parametrised with a single argument C, which stands for �context�.

Because of the reference to that parameter in the dispatch method signature, it e�ectively

limits the set of acceptable runnables only to those explicitly marked to be executed in

that context, which is presented in listing 5.7, where also the choosing of name for RunAt

interface becomes clear, since it can be read in the call-place as: �dispatch new task to be

run at browser�. This way, the proper execution context has to be always clearly stated at

the dispatchment place.

final Path p = Path.to(tree, "/");

log.debug("adding path: {}", p);
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dispatch(new RunAt<Browser>(this) {

@Override

protected void runAt() {

mainFrame.addRootPath(p);

}

});

Listing 5.7: Example of dispatching operation.

That limitation is a completely compile-time solution � compiler marks as errors passing

of non-matching RunAts to Dispatchers. Only after implementation of presented approach,

several issues were found regarding passing of runnables to be executed in a wrong context,

that was opening possibilities for race conditions.

Dynamic context con�nement Execution of code in proper context can also be con-

trolled in run-time using mechanism complementary to the one presented above.

Dispatcher interface provides the method isActive(), which is typically used in Java

assertions at the beginning of methods (an example presented in listing 5.8).

public final class TreeOperations {

...

public static @Nonnull FramsClass processFetchedInfo(Tree tree,

File file) {

assert tree.isActive();

...

}

}

Listing 5.8: Activity assertion.

Those assertions, placed throughout the FJF in all methods of classes accessible from

di�erent threads (like Tree, Browser or Connection, but not Access or Param), enable the

developer to �nd context con�nement issues fast, not waiting for actual failures that can

would be otherwise hard to understand and may even never happen in the development or

testing stage. Typically, in production environment Java virtual machine is running with

disabled assertions, hence that solution incurs no running time penalty.

5.5 Communication

The communication package implements the Framsticks network protocol, as described

in [FNP13]. An important design aspect of this package is an abstraction from the actual

local representation of the remote server tree � the FJF provides such an implementation
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Figure 5.3: Requests class hierarchy.

(the structure package presented in following section), but communication has no depen-

dency on it (it can thus be used with applications interested only in a speci�c element in

the remote server object tree).

It is worth noting that communication package provides not only the client-side im-

plementation, but also a full-featured server-side implementation. Thanks to that, all

FJF-compatible entities can be accessed with any generic client designed to connect to

native Framsticks servers.

This package may be perceived as root cause of the overall asynchronicity of the FJF,

which entails the heavy use of anonymous inner classes as a mean to implement future

callbacks. In this place it is worth to note the existence of programming languages targeting

speci�cally communication systems, like Erlang [ERL13] or to some degree Scala [SCA13].

5.5.1 Connections

Communication package implements Framsticks network protocol in both directions; it

allows not only connecting to Framsticks server, but also supports running a Framsticks-
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compatible server. Each Connection instance maintains two separate threads for sending

and receiving data through java.net.Socket. All operations on both sides are fully asyn-

chronous. At the client side, when issuing a request, a callback is given (typically expressed

as an anonymous class), and control is returned immediately. Passed callback is stored by

the Connection, and will be run upon receiving response from server, with potential result

passed in as argument; this callback always extends ExceptionHandler, so if a request

fails from any reason, information about that failure is also passed to the request issuer.

At the server side, entity handling incoming requests may defer sending response as long

as needed without blocking communication channel from other requests.

5.5.2 Requests

Classes extending com.framsticks.communication.Request represent all requests is-

sued by client. Framsticks Java Framework provide both printing and parsing of those

requests, since these classes are used on the server side as well (in the com.framsticks.

hosting package). Requests are basically divided into two categories: ProtocolRequests

and ApplicationRequests (the complete class hierarchy is presented on �gure 5.3). The

former is used internally by the ManagedConnections, while only the latter can be issued

by the connection's owner.

ClientSideManagedConnection, used internally by RemoteTree, presents a single entry

point for request issuing (presented in listing 5.9).

class ClientSideManagedConnection {

public <C> void send(

final ApplicationRequest request,

final Dispatcher<C> dispatcher,

final ClientSideResponseFuture callback

) {

...

}

}

Listing 5.9: ClientSideManagedConnection

Holding path (for example /simulator/genepools) as an ordinary String, instead of

Path object, allows potential usage of com.framsticks.communication in isolation from

com.framsticks.structure, which constitutes an upper layer with respect to the former

package. It may also be clearly seen in listing 5.11, which presents a bridge method between

the Communication package elements (which sees the network part) and the Structure

package, which understands the tree hierarchy, with the Files as an information conveyor

understood by both. Mentioned listing also shows implementation of auto-removing the

path as a result of exceptional situation's occurrence during the GetRequest processing.
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public final class RemoteTree ... {

...

public void get(final Path path, final FutureHandler<Path> future) {

final ExceptionHandler remover = pathRemoveHandler(path, future);

...

final Access access = registry.prepareAccess(path.

getTop().getParam());

connection.send(

new GetRequest().path(path.getTextual()),

AtOnceDispatcher.getInstance(),

new ClientSideResponseFuture(remover) {

@Override

protected void processOk(Response response) {

TreeOperations.processFetchedValues(

path,

response.getFiles(),

access,

future

);

}

}

);

}

}

Listing 5.10: RemoteTree.get() method.

ApplicationRequest provides a �uent interface to easily and clearly construct such a

request, which can be seen in listing 5.11.

public final class RemoteTree ... {

...

@Override

public void set(final Path path, final PrimitiveParam<?> param,

final Object value, final FutureHandler<Integer> future) {

assert isActive();

final Integer flag = bindAccess(path).set(param, value);

log.trace("storing value {} for {}", param, path);

connection.send(
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new SetRequest()

.value(value.toString())

.field(param.getId())

.path(path.getTextual()),

this,

new ClientSideResponseFuture(future) {

@Override

protected void processOk(Response response) {

future.pass(flag);

}

}

);

}

}

Listing 5.11: ApplicationRequest �uent interface.

5.6 Structure package

Package com.framsticks.structure constitutes a central package of the FJF upper

layers, as it contains the com.framsticks.structure.Tree interface, which together with

com.framsticks.structure.Path class provides access to the Framsticks server structure.

Currently, there are two implementations of the Tree interface, namely com.framsticks.

structure.LocalTree and com.framsticks.remote.RemoteTree. The former provides

access to the actual data structure, and is used mainly in com.framsticks.hosting pack-

age. The latter, although closely related to other entities in com.framsticks.structure

package, is placed in separate package to stress out, that it is the only entity using func-

tionalities provided by com.framsticks.communication package.

The Tree interface is designed to be a minimal interface providing all necessary oper-

ations. All common operations, that may be seen as external to the Tree, are grouped in

TreeOperations, which is another example of the approach mentioned earlier: separation

of data and algorithms.

The whole package strives not to double the underlying data structure. com.framsticks.

structure.Node is not meant to be used as a building block of a tree structure shadowing

the actual data structure, but merely as part of com.framsticks.structure.Path class,

which may be considered as a snapshot of the state of speci�c tree path. Path also serves

as an optimisation in the area of Tree operations, since the actual data structure does not

need to be traversed each time when given operation is performed. However, this class is

not meant to be stored in some permanent way during the FJF execution, which would

e�ectively create a shadowing tree structure, but only to exist for the time needed to per-
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form some speci�c operation. An important aspect of Path class design is its immutability,

all modi�cation operations do not change the object in question, but instead return a mod-

i�ed copy of it. Owing to this feature, Path objects can be safely passed between threads.

The process of Path construction will be referred to as �path resolution�. Path resolution

process starts from the Tree root or from the other Path instance, which holds reference

to the Tree internally � this is crucial for the resolution since it is the Tree that contains

type information about objects: Registry of Framsclass objects. Because of access to

this information, it is also possible during path resolution to construct objects along the

way � this ability is used mainly in the RemoteTree, where the structure is incrementally

created in response to, for example, user exploring new nodes in the GUI.

5.6.1 Side notes

As stated above, one of the important design aspects behind com.framsticks.structure

package is not to create a shadowing structure, but to traverse the actual data structure

directly and regardless, whether it is a LocalTree or a structure build as a replica of re-

mote server's structure. Moreover, the Tree structure is built out of objects, like Joint,

Genotype for re�ected types, PropertiesObject for unknown types or Maps and Lists for

list params, none of which have any relation to the enclosing Tree. Presented solution has

several advantages, including clear design and lack of dependency enforcement, still it has

one important drawback of inability to store meta data concerning tree nodes.

Example of such meta data include:

� �ags marking whether object was fully fetched from the remote peer (get request

with no �elds speci�ed),

� uncommitted changes in GUI,

� history of occurred events.

This issue is addressed with introduction of special data stash, which is maintained

alongside the actual tree structure. This pieces of information will be referred to as

side notes, and are accessed with means of special keys of generic type com.framsticks.

structure.SideNoteKey<T>, which is parametrised by the type of value associated with

that key.

Side notes are also a good example of data and algorithm separation (minimal interface

notion) and an interesting use case for generics � because of those aspects it will be discussed

more thoroughly.

Tree interface de�nes 3 methods for side node manipulation:

public interface Tree extends ... {

...

public <T> void putSideNote(Object object, SideNoteKey<T> key, T value);
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public <T> T getSideNote(Object object, SideNoteKey<T> key);

public boolean removeSideNote(Object object, SideNoteKey<?> key);

...

}

Listing 5.12: Side notes interface in Tree.

First argument for all these methods is an object that is a part of the tree structure.

As it is clearly noticeable, no requirements for the type of node are given.

The AbstractTree implementation maintains a two-level map, with identity and weak

reference key semantics on both levels, with �rst level being the object and the second

the key; values stored in that structure are automatically removed when either object or

key become unreachable.

The parametrisation of SideNoteKey<T> gives important functionalities:

� it makes the interface type-safe in compilation time,

� reduces verbosity of the code (no casting is needed)

� allows to automatically create the side note value, if it is missing.

The former is possible because of parametrisation of the interface (presented in listing

5.12), the latter is possible because SideNoteKey<T> instance stores Class<T> class during

construction time.

5.7 Remote package

The main functionality provided by the remote package is the ability to build and

maintain a representation of the remote Framsticks or FJF server tree structure. This

package builds upon primarily two FJF packages: structure and communication.

Mentioned functionality is enclosed in the RemoteTree class implementing the Tree

interface.

There are few subtle issues handled by the RemoteTree implementation which presented

below.

5.7.1 Handshake

Figure 5.4 presents the sequence diagram of connecting to the remote Framsticks server.

It can be seen that all user requests (e.g. experiment speci�c requests) can be issued right

after creation of the RemoteTree representation. They are bu�ered until the network

protocol settings are established and the most basic information about the remote site is

transmitted back to the client. This way the whole process is completely transparent to

the user.
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Figure 5.4: Handshake sequence.

5.7.2 Response processing

Figure 5.5 presents the processing scheme of the network protocol response.

First, user calls the method get, de�ned in the Tree interface. It is important to notice,

that the calling site does not need no know the actual implementation of the Tree being
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used.

Next, the RemoteTree encodes that request into the GetRequest object, which is passed

to the Connection to be sent (which is is being executed in a separate thread). That

Request object is then bu�ered, and sent after all previously dispatched requests are also

sent.

Subsequently, the remote server (be it the Framsticks or FJF server) sends the response

encoded in the Framsticks �le format. It is parsed to the intermediary representation of

the PropertiesObject, even if the �nal target object uses di�erent storage representation.

That representation is passed to the RemoteTree, where all its attributes are rewritten to

the actual representation of the remote object, which is created placed in the maintained

tree structure.

Finally, the callback passed originally with the getmethod invocation is being executed.

The presented intermediary step of PropertiesObject is necessary, because the parsing

of the file content takes place in the Connections receiver thread, from where it is not

possible to safely access the target object.

User

User

RemoteTree

RemoteTree

Connection

Connection

Server

Server

Request

get("/simulator", callback)

send(GetRequest)

get /simulator

Response

file /simulator

PropertiesObject

callback(Path)

Figure 5.5: Get request processing sequence.

5.8 Hosting package

In the �rst versions of Framsticks Java Framework, part responsible for communication

provided only the ability to connect as a client to the native Framsticks server. This allowed

to develop a GUI client (described in the 5.9), and have made possible to propose the

solution of an entity that would be able to conduct a distributed evolution experiment by

means of controlling multiple Framsticks servers, for which it would be visible as a client.

Approach presented above, albeit providing basic experimentation facilities, would not
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provide any feasible way of tracking experiment progress; user conducting the experiment

could only connect to the separate Framsticks servers and track their individual progresses,

still it would not provide a holistic view of the experiment. Because of the requirement

justi�ed above, the support was introduced for hosting Framsticks Java Framework entities

in a Framsticks-compatible server. In fact, this server-side support constitutes a one-to-one

complementary to the client-side solution and consists of two main parts:

� a server-side connection (ServerSideManagedConnection), sharing much of its im-

plementation with ClientSideManagedConnection,

� a LocalTree being a counterpart to RemoteTree, extensively using

ReflectionAccess and related utilities to provide the client with full information

about hosted structure.

The only requirement for Java class to be available through over Framsticks network

protocol, is to be annotated with FramsClassAnnotation and to have members with

ParamAnnotations. In typical situation, the majority of classes comprising the experi-

ment structure is already annotated for the sake of con�guration parsing; it is another

example of the strength of data and algorithm separation notion.

The hosting infrastructure (com.framsticks.hosting.Server and supporting classes)

is completely external in regard to the hosted entity, which is intuitively re�ected in the

FJF con�guration presented in listing 5.13. Hosting functionality, providing network con-

nectivity to the experiment instances, can be thus seen as an application container very

similar to the web application containers, like Apache Tomcat [APT13].

<?xml version="1.0" encoding="UTF-8"?>

<Framsticks>

<import class="com.framsticks.hosting.Server" />

<import class="com.framsticks.test.PrimeExperiment" />

<import class="com.framsticks.experiment.SimulatorConnector" />

<import class="com.framsticks.structure.LocalTree" />

<Server port="9007">

<LocalTree name="prime-local-tree">

<PrimeExperiment maxNumber="3000">

<SimulatorConnector address="localhost:9100" />

<SimulatorConnector address="localhost:9101" />

<SimulatorConnector address="localhost:9102" />

</PrimeExperiment>

</LocalTree>

</Server>

</Framsticks>
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Listing 5.13: Hosting.

The Server class accesses the hosted structure through means of LocalTree. Once

started, Server listens on a con�gured port for connections over Framsticks network proto-

col. For every accepted connection an instance of com.framsticks.hosting.ClientAtServer

class is created, which encapsulates an instance of com.framsticks.hosting.Cli separate

for each client, thus closely mimicking the original Framsticks behaviour.

Thanks to solution presented above, there is in fact no di�erence between the original

Framsticks server and the FJF server, as long as RemoteTree and GUI is interested. The

di�erence may be noticeable by the user mainly because of di�erences in naming conven-

tions between Framsticks and FJF, the latter following standard Java naming conventions.

Described solution presents the user with a GUI access to both running experiment con-

troller and to the working Framsticks servers in a uni�ed manner, thus allowing to monitor

the experiment run and to track possible problems in all system elements.

5.8.1 Listeners wrapping

Notion of events constitute an important part of original Framsticks solution. The

Framsticks Java Framework presents an interface typical in the Java programming lan-

guage, namely EventListener interface. In the FJF events are visible as EventParam at-

tributes of the FramsClass; as it may be seen in �gure 5.1 they are siblings to ValueParam)

and ProcedureParam types.

An entity wishing to register on all events published by a Framsticks object may simply

�lter out all EventParam instances, and use routines presented in 5.14.

public interface Tree {

...

public <A> void addListener(Path path, EventParam param,

EventListener<A> listener, Class<A> argumentType,

FutureHandler<Void> future);

public void removeListener(Path path, EventParam param,

EventListener<?> listener,

FutureHandler<Void> future);

}

Listing 5.14: Dispatcher.

It is worth noting that presented interface is strongly typed and supports automatic

conversion of events' arguments, where requested type of the argument is denoted as A and

passed in runtime through the Class<A> argument. The actual conversion is performed

by the convert() method (5.15), which executes the following algorithm:

� if both arguments are File, do nothing;
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� otherwise:

� if from argument is a File:

* if toJavaClass is Object.class, then try read using registry;

* otherwise: try to use loadComposites;

� if to argument is a File: use Registry to saveAll

� fail otherwise.

public final class AccessOperations {

...

public static <T, F> T convert(Class<T> toJavaClass,

F from, Registry registry) {

...

}

}

Listing 5.15: AccessOperations.convert.

Conversely, for the sake of full hosting support, events published in Java types are

discovered by Java type to Framsticks type conversion utilities, thus making them visible

and accessible through the Framsticks network protocol.

In conclusion, the events consumer is completely separated from the events' producer,

which can be one of the following:

� a Java object, accessible through the LocalTree),

� a native Framsticks server, accessible through the RemoteTree),

� a remote Java object accessible through the RemoteTree on the client side and

through LocalTree hosted in Server on the server side.
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Figure 5.6: A genotype instance presented in GUI.
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5.9 Graphical User Interface

Graphical User Interface developed for Framsticks Java Framework constitutes of po-

tentially several com.framsticks.gui.Frame instances, each allowing to access potentially

several Tree instances, both local and remote. Each Frame presents user with a tree GUI

component, which presents all attached Tree instances. The nodes can be dynamically

resolved, which in case of RemoteTree results in network requests being issued. Currently

chosen tree node is viewable on the right side of the Frame, in a special Panel instance

prepared for this speci�c object's Framsticks type. Figure 5.6 presents a typical view of

the GUI provided in FJF.

5.9.1 Panels

Each Frame maintains a cache of Panel instances for each com.framsticks.core.

Tree instance. The cache is accessed with string value representing Framsticks type, like

o Simulator or l Genotype uid. Usage of such a cache is crucial for the overall respon-

siveness of the user interface, since it makes the most time-consuming construction logics

a one-time e�ort, leaving the operation of �lling up control values the only operation to

be done each time, when the currently viewed object is changed.

The process of creating panel for a speci�c Framsticks type is prepared to be a cus-

tomisation point of GUI solution. Browser holds a set of PanelProvider instances, which

may be attached in con�guration or programmatically.

Framsticks Java Framework includes two standard PanelProvider classes:

ObjectPanelProvider and ListPanelProvider.

If for a given Framsticks type more than one PanelProvider decides to provide a

Panel instance, all those Panels are automatically wrapped in a MultiPanel, where they

are accessible through tabs.

5.9.2 Tree

JTree component constitutes the central element of the browser Frame. Architecture of

Swing allowed not to double the Tree structure by maintaining a separate tree structure

for means of GUI. Swing does not impose any constraints on the type, that will serve

to represent JTree nodes � it is just an Object. All logics of the tree has to be provided

by a class implementing javax.swing.tree.TreeModel interface, which is presented in its

entirety in listing 5.16.

package javax.swing.tree;

public interface TreeModel {

Object getRoot();

Object getChild(Object parent, int number);
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int getChildCount(Object parent);

boolean isLeaf(Object node);

void valueForPathChanged(TreePath treePath, Object value);

int getIndexOfChild(Object parent, Object child);

void addTreeModelListener(TreeModelListener listener);

void removeTreeModelListener(TreeModelListener listener);

}

Listing 5.16: TreeModel interface.

Documentation of TreeModel states that all arguments of type Object passed to the

TreeModel by JTree are always those previously returned by getRoot or getChild, with

regard to equals() and hashCode(). It might seem that objects like com.framsticks.

model.Joint or com.framsticks.params.UniqueList building up Tree could be used here

directly. This approach is not valid because of the following constraints and goals:

� the TreeModel needs to provide interface to several Tree instances and this informa-

tion in general is not available in these objects;

� JTree uses equals logics for nodes distinction, which might be already used by these

classes to implement semantics not compatible with JTree requirements;

� foreseen support for user favourites, which would result in the need of presenting the

same object under several nodes in the same TreeModel, which would corrupt the

JTree.

Because of the issues presented above, a special thin-wrapper around actual Tree ob-

jects was introduced, namely the com.framsticks.gui.treee.TreeNode. TreeNode holds

a WeakReference to the actual Tree object and implements equal() taking into account

not only the held object itself but also the mount point (that would be di�erent in user

favourites sub-trees). TreeNode also holds CompositeParam describing Framsticks type of

the object being hold and caches reference to appropriate Panel. It is important to note

that TreeNode does not store com.framsticks.structure.Path instance (for the reasons

described in 5.6), but only its textual representation.
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Tabular view Very similar to the TreeModel is the TableModel interface successfully

utilized for ListPanel implementation, which is used to present in GUI objects of type

ListParam. Because of lack of the presented above non-trivial tree structure aspect, im-

plementation of TableModel interface was much more straightforward than the implemen-

tation of TreeModel. Figure 5.7 presents an example of a tabular view.

Figure 5.7: A list of genotypes visible in the GUI.

5.9.3 Framsticks server event utilization

Framsticks server events are utilised in Framsticks Java Framework doubly. First,

user interface uses adheres to the convention of Param naming, i.e. for each param of

type ValueParam identi�ed as some_param it automatically registers for event identi�ed

as some_param_changed. If the Param is of type ListParam, it is expected that event will

contain argument of type ListChange, which is then interpreted accordingly by adding/re-

moving/updating object in Tree and notifying Swing about changes occurred in un-
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derlying tree structure, that need to be rendered in the GUI component. In case of

PrimitiveParam, it is expected that event will contain ValueChange argument, which will

be used to update the maintained Tree (otherwise this param will be explicitly reloaded)

and re�ll GUI control, if the object is the currently viewed one.

For every EventParam (if it is not marked with USER_HIDDEN �ag) ObjectPanelProvider

adds to the constructed ObjectPanel an EventControl component, which presents user

with possibility of manually registering for an event. Received events are available in the

list, that is a part of EventControl.

5.9.4 Consoles

User is also given a possibility of accessing remote Framsticks servers (both native and

FJF ones) through means of a Console frame. There are three types of consoles available:

� TrackingConsole,

� RawConsole,

� ManagedConsole.

The main part of all console frames is made of a single text area containing commu-

nication messages. First one is meant for debugging or educational purposes, as it merely

shows communication between GUI and the remote server (user may �lter directions of

communications). Through TrackingConsole user may check what requests FJF GUI

issues in response to various user interactions.

Both remaining consoles extend InteractiveConsole, which allows to manually write

requests to the remote server and supports history of sent commands and tab-completion.

In case of RawConsole tab-completion is based on the history, whereas in ManagedConsole

it is based on the actual tree structure of the remote server (during completion it auto-

matically issues info and get requests).

5.9.5 Hosting

It is worth to note that GUI infrastructure is also able to directly access a LocalTree

instance, which allows to run experiment directly in the GUI. This approach constitutes

an alternative to the much more sophisticated scenario presented in the 5.8 section (of

which GUI is also a part). The di�erence between those con�gurations is similar in the

nature to the di�erence between running program directly in the terminal emulator and

running in it inside of screen utility.

5.10 Model

Package com.framsticks.model contains various classes re�ecting those present in

native Framsticks simulator. They are primarily used to build RemoteTree representing
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native Framsticks simulators, where they are used through ReflectionAccess. They could

also be used in completely standalone fashion, since this package is considered a lower-layer

package and has no dependencies on Structure package (as it can be seen in 4.1).

Usage of specially crafted classes being accessed through ReflectionAccess, instead of

generic PropertiesObject used in conjunction with PropertiesAccess, is dictated by one

of the project goals, i.e. to provide an easy to use, compile-time checked environment for

interpretation and manipulation of genotypes and creatures, in order to ease experiment

creation. Another important aspect is to simplify future visualization solutions, which

would not have to use Access facilities.

Presented package makes an extensive use of annotations: @FramsClassAnnotation

and @ParamAnnotation (described in section 5.2.1). They are used to associate speci�c

Java classes and their �elds with Framsticks classes. In many situations @ParamAnnotation's

id attribute is used to clearly associate Framsticks to Java naming conventions; such an

approach is far superior to the one using comments due to it's robustness for future changes

(it is presented in listing 5.17).

Several classes found in the com.framsticks.model provide also view to their �elds in

a more object-oriented friendly way, which is exempli�ed in listing 5.17 with getRotation

and setRotation routines.

@FramsClassAnnotation(id = "p")

public class Part extends BasePart implements ModelComponent {

@ParamAnnotation(id = "rx")

public double rotationX;

@ParamAnnotation(id = "ry")

public double rotationY;

@ParamAnnotation(id = "rz")

public double rotationZ;

public Point3d getRotation() {

return new Point3d(rotationX, rotationY, rotationZ);

}

public void setRotation(Point3d r) {

rotationX = r.x;

rotationY = r.y;

rotationZ = r.z;

}

@ParamAnnotation(id = "dn")

public double density;
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@ParamAnnotation(id = "ing")

public double ingestion;

@ParamAnnotation(id = "as")

public double assimilation;

@ParamAnnotation(id = "i")

public String info;

@ParamAnnotation(id = "Vstyle")

public String visualizationStyle;

@ParamAnnotation(id = "vs")

public double visualThickness;

...

}

Listing 5.17: Model Part.

5.10.1 F0 scheme

In the Framsticks system, the scheme of f0 representation is expressed in an xml �le.

Thanks to the generic character of XmlLoader described in previous section, it was possible

to use the XmlLoader to read not only the FJF con�guration, but also the f0 representation

scheme. The SchemaBuilder class only imports needed classes (like FramsClassBuilder)

into the XmlLoader, after which just runs the loader, not interfering with its internal logics

(the approach is very similar to the one of MultiParamLoader).

5.11 Exceptions

In previous sections describing individual Framsticks Java Framework packages, it was

made apparent, that FJF as a whole is an inherently asynchronous environment (with

main causes presented in section 2). Although usage of anonymous classes (described in

3.5) proved to be a clear and robust way to express a processing path distributed along

both time and space (being called from di�erent threads) in a compact piece of code, one

important issue remained unsolved, namely the exception handling.

Introduction of exception notion in modern programming languages proved to be a

very important improvement. In a typical situation, thrown exception is passed to the

�rst catch statement, with the stack above that statement being unwound. In the case

of an exception being thrown from body of an asynchronous callback (possibly expressed

using anonymous class, but it is not required in this context), if it is not caught explicitly

using try/catch inside that body, it will propagate to the calling environment, which

typically is not the one appropriate to handle arisen exceptional situation represented by

the exception.
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5.11.1 FramsticksException

A standard exception class found in JDK provides some short description and informa-

tion regarding stack state at the moment exception was thrown. Again, in most situations,

this information only seemingly allows the developer or end user to understand the state

of environment when the exceptional situation occurred. What is missing is the context,

i.e. values of some variables crucial to understand when the situation actually occurs �

the di�erence being between exception saying about read �le failure, and the exception

conveying also �le's name.

If the exception arguments are not to be utilised by the application code itself (for ex-

ample to dispose some problematic resource), it is not actually needed for those arguments

to be stored in a structured way, i.e. by exception class' �elds.

Issues presented above are standing behind the shape of FramsticksException class.

FramsticksException serves as a root in the FJF hierarchy of exception classes. It presents

a �uent interface, enabling an easy construction enclosing message header, optional cause,

and an arbitrary number of context arguments. A typical use case is presented in listing

5.18.

try {

...

} catch (ClassCastException e) {

throw new FramsticksException().msg("failed to cast").cause(e)

.arg("param", param)

.arg("actual", value.getClass())

.arg("requested", type);

}

Listing 5.18: Throwing FramsticksException.

The second argument to the FramsticksException.arg() method can be a value of

any Java type, which provides a concise toString() implementation. All stored arguments

are converted to string when the construction of human-readable message is requested

from the FramsticksException object. This typically happens during logging, but is

also used to �ll status line in GUI or to provide a comment to the error response in

Framsticks network protocol (what is will be presented more closely at the end of this

section). Adopted approach has one more advantage, namely a trivial implementation of

exception classes extending FramticksException: just the extends clause with an empty

class body.

5.11.2 ExceptionHandler

Drawing from the exception notion itself, Framsticks Java Framework introduces a

notion of ExceptionHandler that is passed behind the scenes, much like the exceptions
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processing path is expressed behind the main application logic.

The regular Java exception handling scheme together with introduced ExceptionHandler

will be referred to as asynchronous exception path.

5.11.3 Future and FutureHandler

ExceptionHandler is used extensively with Future and FutureHandler generic ab-

stract classes. The main idea behind those classes is to provide a concise way of expressing

future result value processing as well as to allow hiding of exception processing path.

FutureHandler de�nes an interface allowing passing result of computation (network re-

sponse in particular) through pass method, which is internally handled by overloaded

result() method. If any exception is thrown during result processing, it is handled by

that class itself � it implements ExceptionHandler interface, but leaves the actual im-

plementation of handle() method to the user. Argument of type FutureHandler<T> is

typically passed as the last argument of asynchronous methods that would, if synchronous,

return value of type T.

Future class extends FutureHandler by proxy�ng the exception processing path to

other ExceptionHandler, which is passed at construction time.

public abstract class FutureHandler<T> implements ExceptionHandler {

protected abstract void result(T result);

public final void pass(T result) {

try {

result(result);

} catch (FramsticksException e) {

handle(e);

}

}

}

Listing 5.19: FutureHandler.

public abstract class Future<T> extends FutureHandler<T> {

protected final ExceptionHandler handler;

public Future(ExceptionHandler handler) {

assert handler != null;

this.handler = handler;
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}

@Override

public final void handle(FramsticksException exception) {

handler.handle(exception);

}

}

Listing 5.20: Future.

Listing 5.22 presents a real-world yet clear example of those classes usage (with com-

parison of hypothetical synchronous case in 5.21). Here, only the logging operation is

executed before returning result to the outer FutureHandler, but in other situations more

complex operations could be performed here, possibly changing the type of result being

passed along. The synchronous example shows a situation when no exceptions are to be

specially handled by the netsave() routine, so no try/catch construct is needed here.

Presented approach also allows not to include it explicitly in the asynchronous case, since

the try/catch block is already provided in FutureHandler class. Hence the initial goal of

hiding the exception processing path and not cluttering the main processing path, as it is

easily achievable in synchronous case, is also possible in asynchronous case.

public <N> N netsave(Class<N> netJavaClass) {

N net = call(simulatorPath,

getParam(simulatorPath, "netsave", ProcedureParam.class),

arguments(), netJavaClass

);

log.debug("netsave of {} done", net);

return net;

}

Listing 5.21: Synchronous exception handling.

public <N> void netsave(Class<N> netJavaClass,

final FutureHandler<N> futureNet) {

call(simulatorPath,

getParam(simulatorPath, "netsave", ProcedureParam.class),

arguments(), netJavaClass,

new Future<N>(futureNet) {

@Override

protected void result(N net) {

log.debug("netsave of {} done", net);
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futureNet.pass(net);

}

}

);

}

Listing 5.22: Asynchronous exception handling in FJF.

5.11.4 Framsticks network protocol integration

It is worth mentioning that also error responses to Framsticks network protocol re-

quests are being passed along the presented asynchronous exception, on both sides of

communication channel. In the FJF server implementation, if an exception is thrown dur-

ing the request processing, it is caught and the its description is sent to the client as a

comment to the error response. At the client side, if a request results in an error re-

sponse (irrespectively from whether it is the native Framsticks server or FJF server on the

other side of communication channel), an exception object is constructed using that error

comment, and it is then passed to the request callback; the implementation is distinctively

compact and is presented in listing 5.23). This way, to some degree, FJF supports passing

exceptions not only between threads in an asynchronous environment, but also between

processes running on distinct machines.

public abstract class ClientSideResponseFuture extends Future<Response> {

...

protected abstract void processOk(Response response);

@Override

protected final void result(Response response) {

if (response.getOk()) {

processOk(response);

} else {

handle(new FramsticksException()

.msg("invalid response")

.arg("comment", response.getComment())

.arg("request", request));

}

}

}

Listing 5.23: Processing request's failure.
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5.12 Problems

5.12.1 The di�erence between Void.TYPE and Void.class

java.lang.Void is an important part of Java type system. In section 5.11 class

Future<T> was shown, that is used to wrap computations to be performed on result avail-

able asynchronously. In situations when there is no appropriate return value to be passed,

and the Future is used just to express the ordering of operations, Void type is used as the

generic argument of Future (listing 5.24 shows such an example). Existence of Void allows

not to prepare special Future-like class allowing to pass result of a function not returning

any value (being of type void), that would force to double also other associated classes,

like FutureHandler.

addListener(path,

getParam(),

newListener,

Object.class,

new Future<Void>(owner.getFrame()) {

@Override

protected void result(Void result) {

putSideNote(path, listenerKey, newListener);

refreshState();

}

}

);

Listing 5.24: Listener registration in EventControl.

All primitive types in Java, like int or float, have accompanying boxing types:

Integer, Float. In the re�ection layer of Java boxing type Integer is represented by

singleton Integer.class, whereas primitive type int is represented by singleton Integer.

TYPE � only boxing types have a static �eld TYPE. Also Void type has both class and

TYPE �elds, but the di�erence between them is more subtle due to speci�city of void.

Value of type Void.class has only one possible value: null, whereas Void.TYPE has no

valid values at all. The former is found in re�ection to represent formal argument type

of methods like the one presented in listing 5.24, while the latter represents type of value

returned by methods of type void. That di�erence, although quite intuitive once known,

may be very confusing and is not clearly stated in the documentation of Void type found

in o�cial Java documentation [JAV13].

60



Chapter 6

Computational experiments
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Figure 6.1: Example of distributed experiment con�guration

This chapter will present the developed infrastructure for distributed experiments on ar-

ti�cial evolution in the Framsticks system. The experiment is divided logically into two

parts: computational part � executed in Framsticks servers and expressed in Framscript

� and controlling part, hosted in FJF, with experiments' logics expressed in Java.

The experimentation framework provides possibility of using multiple Framsticks servers

as computational nodes running on remote hosts. The controlling node can be directly em-

bedded in the GUI instance or be executed remotely, in background. The former case can

be used for short-running experiments or during development of new experiment, while the

latter case is designed for long-running experiments. In this scenario, user can access the

controlling server by attaching a GUI to the remotely running server, and after checking

its state or manipulating the experiment �ow, user can again detach from the server. In all

cases, user can attach GUI to the running computational nodes directly � this possibility

might be used for debugging purposes. Controlling server is able to use instances of Fram-
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sticks working servers that are already running or to spawn new instances. FJF also allows

user to connect to several running experiments from a single GUI� an example of such a

scenario is presented in the 6.1, where user connects with experiment instances con�gured

with di�erent parameters and uses di�erent number of Framsticks computational servers.

user.host

FJF

aaa.host

FJF

Hosted

Framsticks

bbb.host

Framsticks

Browser

RemoteTree RemoteTree

Experiment

Simulator Simulator

Simulator Simulator

Figure 6.2: Example of experiment internal hierarchy.

6.1 Running infrastructure

In this section a generic infrastructure for de�ning and running experiments will be pre-

sented (speci�c examples will be discussed in the following section). All major classes pro-

viding functionalities described in this section are placed in com.framsticks.experiment

package.

The experiment in FJF is expressed through a hierarchic structure of entities possibly

distributed among several hosts (shown on �gure 6.2). Instance of Experiment class rep-

resents the root of this tree, enclosing all experiment logics through various instances of

classes extending ExperimentLogic, which are bound together to express the experiment

run (they will be discussed in the next section). The computational nodes are repre-

sented as instances of Simulator class; each of them internally holds a single instance of
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RemoteTree class representing the actual Framsticks server. Figure 6.2 also presents the

possibility of direct attachment of GUI to the computational node.

Infrastructure presented up to this point leaves out one important issue, namely starting

and maintaining the computational nodes � for this purpose several classes were devised.

They are brie�y described below with their hierarchy presented in �gure 6.3.

SimulatorProvider is an interface allowing to request for a new Simulator instance in

asynchronous way.

SimulatorConnector is the simplest provider, which allows to connect to a single

already running Framsticks server instance which should be available under precon�g-

ured address. After successful connection to the remote server, but before returning new

Simulator instance to the requesting user (an Experiment instance), SimulatorConnector

automatically tries to resolve the /simulator path and checks whether proper expdef is

loaded.

SimulatorRunner is similar to the SimulatorConnector, but it starts the Framsticks

server on its own, possibly on a remote host (using SSH). The user is responsible for setting

up SSH keys on both communication ends.

SimulatorRange is a composite provider which is able to provide multiple simulators

running on multiple hosts, using internally SimulatorConnector or SimulatorRunner (de-

pending on con�guration).

SimulatorGroup is a composite provider using internally any other SimulatorProviders.

SimulatorSpecification SimulatorProvider

provideSimulator(SimulatorSpecification, Future<Simulator>)

SingleSimulatorProvider

host
port

SimulatorConnector SimulatorRunner

SimulatorRange

host-range
port-range

SimulatorGroup

contains

use

use

Figure 6.3: Hierarchy of simulator providers.
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Typically, an Experiment instance is con�gured to use a composition of presented

SimulatorProviders, which are then called to provide new Simulator instances as needed,

i.e. up to a con�gured amount or as a response for a manual user request (available

from GUI). It is important to note that SimulatorProviders hierarchy is an open class

hierarchy (in opposition to for example Params hierarchy), which means that custom

SimulatorProviders implementing di�erent policies can be easily added and utilised.

6.2 Experiment de�nition

The �nal element of the experimentation infrastructure is the ExperimentLogics sub-

system. An important design aspect of the FJF is to facilitate de�nition of new experiments

with the least e�ort possible, however with an assumption that experimenter has a basic

Java understanding. In order to ful�l those goals a notion of ExperimentLogic has been

devised and implemented. The ExperimentLogic is an abstract block of logic, that is

designed to work in the environment provided by the Experiment and provides only a

single, speci�c functionality. A typical ExperimentLogic can be described with following

properties:

� provides extensions points (in the shape of callback), to which other logics can attach

their own functionality;

� automatically registers on speci�c events of the Experiment, attached Simulators

or other ExperimentLogics;

� can maintain an internal state: global or local to the speci�c Simulator instance.

The most basic example of an ExperimentLogic is the NetLoadSaveLogic, which en-

capsulates /simulator/netload and /simulator/netsave procedures and presents a pure

Java interface to that functionality. Although fundamental to most experiments, it needs

to be stressed out that NetLoadSaveLogic is not obligatory to be used at all, if only given

experiment takes a di�erent approach to the communication with controlling server.

Other concrete implementations of ExperimentLogic notion will be discussed in fol-

lowing sections presenting proof-of-concept experiment scenarios.

6.2.1 Prime experiment

Prime experiment is a work-case example, in which a task of �nding all prime numbers

in given range is exercised. The computational server side implementation is deliberately

non-optimal. It was considered valuable to include discussion of this trivial experiment

in this chapter, since it presents the same advantage which was exploited during exper-

imentation framework development � it allows to concentrate solely on infrastructure,

management and communication issues. This section may be used as a guide to creation

of new experiments of arbitrary character.
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State representation

In terms of Framsticks �le format, the state experiment is expressed in a way presented

in listing 6.1, namely using two objects of types ExpParams and ExpState, where the former

holds the task question, while the latter holds the result.

ExpParams:

from_number:150

to_number:200

ExpState:

current_number:201

result:@Serialized:[151,157,163,167,173,179,181,191,193,197,199]

Listing 6.1: Prime experiment state.

For interoperability with FJF, two short dedicated classes were prepared, annotated

with FJF annotations (presented in section 5.2.1), with names matching the ones coming

from the computational server (although they could be di�erent, if only properly anno-

tated). They are both enclosed in PrimePackage class (presented in listing 6.2)

@FramsClassAnnotation(order = {"params", "state"})

public class PrimePackage implements WorkPackage<PrimePackage> {

@ParamAnnotation

public final ExpParams params = new ExpParams();

@ParamAnnotation

public final ExpState state = new ExpState();

...

}

Listing 6.2: Prime experiment state.

Annotations used in all three mentioned Java classes � together with several FJF

generic algorithms working on those annotations � allow the experiment creator not to

write any code responsible for experiment state serialisation/deserialisation.

Work package model

The main ExperimentLogic used by the PrimeExperiment, is the WorkPackageLogic,

which assumes that the problem domain can be decomposed into a number of independent

tasks. In terms of FJF it is expressed in the fact, that the presented PrimePackage class
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implements WorkPackage generic interface, which is used by the generic WorkPackageLogic

(which is parametrised with type of the work package).

An instance of WorkPackageLogic<PrimePackage> specialisation is included as a part

of PrimeExperiment class de�ning the experiment.

WorkPackageLogic internally uses the NetLoadSaveLogic to send computation requests

and receive results. One of facilities provided by that logic is the ability to track the work

packages being sent and resend them, if necessary. If the class implementing WorkPackage

interface provides an appropriate implementation, it also possible to resend only subdomain

of the original package instance, if partial results were received.

6.2.2 Standard experiment

The standard experiment de�nition is the canonical example of Framsticks experiment.

It provides the means to express an arbitrary �tness criterion and simulate evolution of

individuals using a single genotype pool.

In the scope of FJF, it is represented by the StandardExperiment class, which allows to

use multiple native Framsticks servers running standard experiment, and migrate genotypes

between them. The StandardExperiment does not provide any scienti�c value on its own,

it rather presents a FJF-based approach to the problem.

The state of a single Framsticks server instance is represented by the StandardState

class, which implements the NetFile interface, thus making it compatible with the

NetLoadSaveLogic. It is presented in its entirety in listing 6.3.

@FramsClassAnnotation(

register = {Genotype.class, Creature.class},

registerFromInfo = {"Population", "GenePool"}

)

public class StandardState implements NetFile {

@ParamAnnotation(stringType = "o sim_params")

public Object simParams;

@ParamAnnotation(stringType = "l GenePool")

public final List<Object> genepools = new ArrayList<>();

@ParamAnnotation(stringType = "l Population")

public final List<Object> populations = new ArrayList<>();

@Override

public String getShortDescription() {

return ...;
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}

}

Listing 6.3: StandardState.

The simParams �eld will be assigned an instance of FreeObject type, containing all

experiment settings, and each GenePool will contain a list of Genotype instances. The

choose of FreeObject is dictated by the fact that the de�nition of the object is not available

beforehand through the regular info. It is worth pointing out that the code presented in

the mentioned listing provides all information needed by the FJF to properly serialize

and deserialise that structure (using utilities provided by AccessOperations). Beside

the typical description of the class (@ParamAnnotations) used by various FJF automated

mechanisms, the annotation of this class contains hints telling the registry of FramsClasses

to also register Genotype and Creature types (based on their Java counterparts), and to

load descriptions of Population and GenePool from Framsticks �les.
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Chapter 7

Summary

This work has brie�y yet thoroughly presented all major elements and aspects of the

developed software solution: the Framsticks Java Framework.

During the development phase several useful tools were used, including static code

analysis and automated GUI testing.

The FJF utilized several non-trivial aspects of Java programming language, like re-

�ection and annotations.

The type model de�ned by the Framsticks system has been implemented in the Java

language, providing a solid base for any Java application related to the Framsticks system.

The network protocol has also been implemented in a low-level manner, thus enabling

the creation of various applications communicating with native Framsticks servers. Be-

side the client-side implementation, the FJF also provides full server-side implementation,

allowing to expose arbitrary Java data structures through mentioned protocol.

Specially designed GUI module has been prepared, allowing the user to communicate

with the Framsticks servers in a convenient fashion.

The FJF allows to use native Framsticks servers as computation nodes in a distributed

experiment.

Together with the network protocol implementation, GUI also provides the user with

an insight to the distributed experiment being controlled in the FJF.

The adopted approach has been validated by the preparation of two distributed exper-

iments, one being a trivial prime number searching, and the second being a distributed

version of a standard Framsticks experiment.

The Framsticks Java Framework has been designed to be an extensible and open frame-

work. Many features provided by the FJF were not used in their full capabilities during

the validation phase, but they were designed speci�cally for future extensions.
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Streszczenie

Tematem pracy jest rozwój ±rodowiska do prowadzenia rozproszonych oblicze« w sys-

temie Framsticks. W jej ramach zostaª opracowany projekt oraz wykonana implementacja

tego w ±rodowiska w j¦zyku Java, w zwi¡zku z czym otrzymaªo ono nazw¦ Framsticks Java

Framework.

Pocz¡tkowe rozdziaªy pracy przedstawiaj¡ narz¦dzia wspomagaj¡ce proces rozwojowy

(takie jak statyczna analiza kodu, automatyczne testowanie interfejsu u»ytkownika) oraz

elementy j¦zyka Java szczególnie istotne z punktu widzenia FJF (re�eksja, anonimowe

klasy).

Dalsze rozdziaªy prezentuj¡ szczegóªowo wszystkie najwa»niejsze elementy FJF, wraz

z nakre±leniem ich roli ich na tle caªo±ci rozwi¡zania, pocz¡wszy od implementacji modelu

typów zde�niowanego z systemie Framsticks oraz implementacji odczytu i zapisu danych

kompatybilnego z systemem Framsticks, poprzez komunikacj¦ sieciow¡ i reprezentacj¦ struk-

tury zdalnego serwera, ko«cz¡c na gra�cznym interfejsie u»ytkownika.

W rozdziaªach tych zawarto tak»e przykªady praktycznych zastosowa« kilku idei pro-

gramistycznych, takich jak na przykªad ±cisªe rozdzielenie struktur danych od algorytmów

na nich operuj¡cych, czy obsªug¦ wyj¡tków w ±rodowisku asynchronicznym i rozproszonym.

Przedostatni rozdziaª zawiera opis przykªadowych eksperymentów przygotowanych w

oparciu o FJF, które stanowi¡ wery�kacj¦ poprawno±ci przyj¦tego podej±cia: trywialnego

poszukiwania liczb pierwszych oraz zrównoleglonej wersji standardowego eksperymentu

dostarczanego wraz z system Framsticks.

Ostatni rozdziaª zawiera podsumowanie prezentowanego rozwi¡zania.
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