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Abstract

This work describes a new heuristic algorithm that estimates structural and geo-
metric similarity of three-dimensional morphologies. It is an extension to previously
developed measure of similarity [25] that was only able to consider the structure of
3D constructs. Morphologies are modeled as graphs with vertices as points in a 3D
space, and edges connecting these vertices. This model is very general, therefore the
proposed algorithm can be applied in (and across) a number of disciplines includ-
ing artificial life, evolutionary design, engineering, robotics, biology and chemistry.
The primary areas of application of this fast numerical similarity measure are arti-
ficial life and evolutionary design, where great numbers of morphologies result from
simulated evolutionary processes, and both structural and geometric aspects are
significant. Geometry of 3D constructs (i.e., locations of body parts in space) is as
important as the structure (i.e., connections of body parts), because both determine
behavior of creatures or designs and their fitness in a particular environment. In this
work both morphological aspects are incorporated in a single, highly discriminative
measure of similarity.
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1 Introduction

In the areas of artificial life and evolutionary robotics, just as in studies of real life,
there is a need to compare individuals. They are called creatures, animats, agents
or robots, and since they need to work in the world we live in, they are made three-
dimensional constructs. They are also expected to handle all kinds of interaction with
the environment – just as animals.

Researchers that design or evolve such constructs face the problem of classifying
them. Humans encountered this issue earlier with natural life forms, and found it
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desirable to introduce some order among organisms – primarily using morphological,
and recently, molecular information [17]. In technology, continuous increase of computer
power facilitated generating constructs that are increasingly complex to the point where
humans are unable to understand them in depth. Just like there are huge amounts
of data that cannot be handled manually, there are also algorithms that can generate
complex systems too sophisticated to be analyzed manually. More and more often
computer-generated solutions can be tested, proved successful and human-competitive,
but their design cannot be understood, or it would cost a lot of human time.

This situation is common in artificial life and evolutionary design. Fortunately,
generated or designed creatures exist in a digital form, so in order to avoid tedious
and manual work on analyzing and systematizing them, one can employ various kinds
of automated procedures (tools). These tools must be first created though. Once they
exist, they can also be used for real creatures as long as real creatures can be represented
in the model supported by the tools. Such analysis tools may be therefore useful both
for computer science and biology. Measures of symmetry [3, 20] and similarity [25] are
examples of such tools that deal with physical body structure – similarity measure being
one of the simplest, yet quite powerful. Quantitative measure of similarity allows to

• analyze structure of populations of individuals (e.g. diversity, convergence, etc.),
facilitating better interpretation of experimental results,

• discover clusters in groups of individuals,

• reduce large sets or populations of individuals to small subsets of diverse repre-
sentatives, thus reducing complexity and size of experimental data and making it
more comprehensible,

• infer dendrograms (and hopefully, phylogenetic trees) based on morphological dis-
tances between individuals,

• introduce artificial niches, or species, by modifying fitness values in evolutionary
optimization [12, 33],

• restrict crossing over so that only similar parents are involved, which reduces the
risk of impaired offspring,

• test correlation between similarity and quality of individuals, determine global con-
vexity of the solution space [21] and develop efficient distance-preserving crossover
operators [46, 31].

The graph-based model of morphology, considered here in the artificial life context,
is popular in many disciplines and can represent any kind of structures where con-
nected vertices are located in a 3D space as shown on Fig. 1, see also Sects. 1.2, 2.1
and 4.2. In particular, this model of morphology can represent skeletal and circulatory
systems, molecules and chemical structures, trusses in architecture and structural en-
gineering [16], constructs made of a finite number of elements (e.g. robots), computer
graphics objects and meshes, and geolocated graphs or communication networks. Thus
a compatible measure of similarity could also be used to compare constructs coming
from different disciplines – e.g., to find a truss whose structure resembles most a given
crystal structure, to direct simulated evolution to evolve a morphology that resembles
(or differs from) a specific stick insect from the order of Phasmatodea, etc.
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Figure 1: Sample disciplines where 3D objects are often represented as graphs: computer
graphics, anatomy, design and engineering, chemistry.

1.1 Similarity and geometric properties of morphology

In [25] we introduced a heuristic, numerical measure of morphological similarity for 3D
constructs. The measure, however, was only aware of structural properties of compared
bodies, as illustrated in Fig. 2. Morphologies with identical structure and only differing
in geometry were considered perfectly identical. However, since these constructs exist
in a 3D world where body geometry plays an important role because of numerous phys-
ical interactions (e.g. touch) and physical properties of the environment (e.g. gravity,
friction), it is necessary to consider body geometry as well.

In real and artificial life, geometric aspects determine various functions that an
organism can perform (e.g. abilities of efficient locomotion [3], jumping, covering a large
area or space, having a tall body, etc.). Body geometry is as important as body structure,
and both properties influence efficiency – consider for example the ability to move fast
in land and water environments – obviously, geometries of successful creatures differ in
the two cases. Another example is a setting where successful creatures need tall bodies
so that their top parts are high above the ground. Thus they need a stable base, and
the geometry of the base part determines stability of individuals. Without considering
geometry, we may be unable to capture any dissimilarity, as illustrated on Fig. 3.

For complex morphologies, it is more likely that any pair will be structurally differ-
ent. The simpler the bodies and the smaller the number of their elements, the higher
the probability of encountering identical structures. In this context, introducing geom-
etry into the measure of similarity improves properties of the measure and increases
resolution of the measure so that it is more sensitive to differences in morphologies and
can discriminate constructs that were previously considered identical. This is especially
important when the similarity estimation is applied to large numbers of individuals and
no assumptions can be made regarding structural difference of their bodies.
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Figure 2: UPGMA clustering method [40] applied to 10 evolved morphologies, with
similarity based on structural aspects only.

1.2 Related works

The problem of estimating similarity of 3D structures, primarily motivated by applica-
tions in computer vision and bioinformatics, is actively studied in many fields of science.
However, existing solutions to this problem are either too specific or too inefficient to
be directly applied to the model considered in this article (see also the list of require-
ments in Sect. 2.2). 3D objects can be represented in a number of ways – as solids,
surface meshes, skeletal structures or descriptions of object properties. The latter rep-
resentation has been employed in computer databases of 3D objects, where relational,
quasi-symbolic methods can be used to find similar structures [39, 2, 34].

In computer vision, a number of approaches exist to find similar 3D objects [19,
45, 41, 14, 36, 11, 38]. These approaches are mainly based on extracting and then
comparing some kind of characteristics (descriptions) of the objects, and are often used
to recognize (identify) known 3D objects based on their 2D view(s). Many techniques
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Figure 3: Human-designed morphologies that share the same structure. They are indis-
tinguishable by the similarity measure that only considers structural aspects (dissimi-
larity is zero).

exist that only concern structural similarity and finding maximal common subgraphs,
subgraph isomorphism or graph edit distance [22, 15, 28, 7].

In chemical informatics [27, 30, 6] and in bioinformatics, it is often sufficient to
discover identity (isomorphism) of graphs or subgraphs [10], not the numerical estimate
of dissimilarity. Moreover, in chemical and bioinformatic models, additional information
is taken into account when comparing two structures, and these structures always satisfy
a number of well-known constraints.

In chemical informatics, this additional knowledge may concern active reference
structures. In bioinformatics, where protein structures are usually compared [4, 8],
even more assumptions are made – e.g., that protein structures are linear and made of
a number of smaller building blocks – amino acids. Then, the average distance between
the backbones of superimposed proteins may be measured (using well-known RMSD [29]
or some other measure [43, 1]). In chemical informatics, 2D fingerprints are usually com-
pared [44] to identify common substructures, which suggests overall structural resem-
blance of the two molecules. Numerous 1D, 2D and 3D measures exist for this purpose,
but methods used in cheminformatics and bioinformatics deal with chemical molecules
made of atoms that can only bond in a finite number of ways. This specific property is
exploited to identify smaller components and to compute chemical similarity.

This paper is organized as follows: Sect. 2 presents the model of morphology that
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is considered throughout this work, describes in detail components of the dissimilarity
estimation algorithm that handle geometry of constructs in addition to their structure,
and finally summarizes properties of the measure. Sect. 3 illustrates the process of
spatial alignment and matching of sample pairs of morphologies, while Sect. 4 discusses
performance of the algorithm, gives an overview of possible generalizations, and outlines
potential directions for future research.

2 Estimating structural and geometric similarity

2.1 Model of morphology

The morphological model considered here represents a construct as a graph where ver-
tices correspond to body parts (e.g., material points), and arcs are connections between
these parts. Let V denote a non-empty set of vertices, and let E be a set of edges. The
function:

edge connects : E → V 2

represents connections (arcs) between pairs of body elements (vertices).
In our former works, the topology of the morphological graph only concerned the

way vertices are connected [25]. This structural information was provided by the sets E,
V , and the function edge connects. To estimate geometric similarity, we additionally
need information about coordinates of body parts in V as they are located in a 3D
Euclidean space:

position : V → R3

where R denotes the set of real numbers.
In artificial life or evolutionary design applications, the morphologies belong to active

or passive constructs or creatures that have a body and may have a brain (control
system). Body is modeled here as an undirected, spatial graph, and may be composed
of a finite number of elements – e.g., material points or balls connected with joints.
Usually, the morphology graph is connected, which means that the construct does not
have isolated parts.

The elements of body (parts, joints) and brain (neurons, receptors, effectors, neu-
ral connections) can be characterized by properties like mass, friction, stiffness, neural
weights and other parameters – these constitute a variable number of additional at-
tributes of vertices and edges in the model. For sample implementations following this
model of morphology see chapters 3, 4, and 5 in [24], and [18]. Some variants of Artificial
Chemistries (chapter 11 [24]) are also compatible with the model.

Compared to biochemical structures (e.g., proteins), artificial life constructs are more
irregular and have less elements, since the number of vertices in the primary structure of
a body is typically smaller than the number of atoms in complex molecules. Constructs
in artificial life and evolutionary design are arbitrary, so no assumptions are made as to
their structure, shape, geometry and occurrence of substructures.

It is possible to represent solid objects in the model described above by extracting
their surface mesh (“wireframe”), or a graph that represents a complete volume of
a solid [9]. This should be done carefully especially for smooth surfaces, as various
mesh generation algorithms use different approaches to create edges that approximate a
surface [35, 23]. Since the structure of the graph plays an important role in estimating
dissimilarity, comparing complex surface meshes is primarily useful when their graph
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structures are similar and only geometries differ. Otherwise it may be more appropriate
to compare skeletal systems of 3D objects rather than their surface meshes.

2.2 Computing dissimilarity value

The model of morphology for artificial life and evolutionary design applications must
be able to represent any possible 3D construct (i.e., phenotype), and there are also a
number of requirements for the dissimilarity estimation algorithm that are imposed by
these application domains:

• the algorithm will likely be applied to compare all pairs of constructs in large sets
– therefore it should be fast and should have low complexity, so that execution
time does not grow quickly when the complexity of morphologies increases,

• the dissimilarity measure should concern both structural and geometric aspects
of compared morphologies at the same time, as they both determine mechanical
properties and dynamics of constructs,

• the value of dissimilarity should be sensitive to small geometric and structural
differences in compared morphologies,

• the algorithm should handle any number of properties associated with vertices and
edges,

• the algorithm should be easily customizable so that importance of individual as-
pects of similarity can be adjusted depending on the experiment.

From a theoretical point of view, the problem of similarity estimation in the morpho-
logical model that is considered here is closely related to the problem of isomorphism of
graphs. The task is to find the (best) matching between parts (V sets) of the two body
graphs. However, an exact algorithm working on such sophisticated graph representa-
tions is not feasible. It would have an unacceptably high computational complexity (the
problem of finding the maximal common subgraph is NP-hard). The typical size of V
in our artificial life experiments ranges from 5 to 50, but constructs with thousands of
elements exist, and there is no upper bound for the number of parts a creature or design
may consist of.

Therefore, a fast heuristic method has been previously proposed to estimate dissim-
ilarity of two individuals [25] that matches their body structures based primarily on
degrees of vertices. The V sets are sorted by the degree of vertices. Vertices of the
same degree are sorted by the number of control units (neurons, sensors and actuators)
associated with these vertices. Then the algorithm matches vertices from both sets (thus
constructing the matching function, match) starting from vertex groups with the highest
degree and, subsequently, the highest number of control units. In case of ambiguity, ad-
ditional properties of vertices are used as discriminating features (additional properties
of edges are propagated to their incident vertices). Beginning with vertices that have
the highest degrees helps preserve the most important parts of structures from being
unmatched. When the two compared constructs have a different number of vertices,
each missing vertex produces dissimilarity ingredient as big as would be produced by
two maximally dissimilar vertices.

Note that although we usually speak about similarity, it is the dissimilarity (differ-
ence) between the two structures that is actually computed, i.e., the larger the value,
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the more different the organisms are. The value of zero means that no differences could
be determined. The general procedure of computing dissimilarity is as follows:

• create models corresponding to the two compared constructs – the V1, E1, V2 and
E2 sets and the functions edge connects1, edge connects2, position1, position2, as
described in Sect. 2.1,

• depending on the application area, consider a preprocessing step to balance the
number of edges, vertices, edge lengths or the size of compared models – e.g., by
adding or removing edges or vertices in a controlled way while preserving shapes,

• build the matching function, match, between V1 and V2,

• given match, compute individual components of dissimilarity,

• if necessary, aggregate individual components of dissimilarity to obtain a single
value. The weighted sum formula can be used to compute the total value of
dissimilarity:

dissim = dV wV + dDwD + dNwN + dGwG (1)

where dV is dissimilarity in the number of vertices (points), dD estimates the differ-
ence in degrees of matched vertices, dN reflects differences in neurons, sensors and
actuators attached to body vertices, and dG indicates geometric distance between
matched points.

The weighted sum is often used as a simple way of aggregating individual aspects,
but it is not required to use this particular form of aggregation, or to aggregate
individual factors.

The most important role in this procedure is played by the match function. Once this
function is found, it further determines values of individual components of dissimilarity.

The algorithm that estimates structural and geometric dissimilarity builds on the for-
mer geometry-unaware algorithm. The four major enhancements that were introduced
are described below.

2.2.1 The dG component of the weighted sum

The dG component reflects the distance between matched points from V1 and V2. For
each point v1 ∈ V1 matched with v2 ∈ V2, the dG is increased by the Euclidean distance
between v1 and v2. If some point is not matched at all (it has no counterpart in the
other organism), then dG is increased by its distance to the origin of the coordinate
system (see also Sect. 2.2.3).

If weighted sum aggregation is used as in (1), then the value of dG is multiplied by
the weight of the geometric aspect of similarity, wG, and ultimately added to the total
dissimilarity value, dissim.

2.2.2 Enhanced procedure that finds the match function

The match function matches points from both morphologies. In order to consider ge-
ometric aspects of bodies, coordinates of matched points must be taken into account
while match is constructed. The heuristic approach outlined earlier remains unchanged.
It tries to match points that differ least, but apart from considering degrees of vertices
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and their properties, it also considers the Euclidean distance between matched points
(dG) multiplied by the wG weight. This way, the wG weight reflects the importance of
the geometric aspect while the matching is built. High values indicate high importance
of geometry, while wG = 0 ignores it both in the matching process and in the weighted
sum of dissim.

2.2.3 The SVD transform

The matching that is constructed, as well as the value of dG, depends on the coordinate
systems of both models. Note that original coordinate systems of morphologies can
be entirely unrelated: axes can be swapped or rotated, and origins can be relocated.
Therefore it is crucial to first align both structures so that they overlap as much as
possible.

To align the two structures, the SVD transform [32, 13, 42] is used. There is no
information loss since a 3D space is transformed into another 3D space (dimensionality
is not reduced). The SVD transform is performed for each of the two morphologies
separately. As a result, the origin of the coordinate system is moved to the center of
each construct (this is the location where the average distance to all vertices from V
is minimal). Additionally, the three axes are aligned in such a way that the highest
deviation of coordinates from the origin takes place along the first axis, the second
highest deviation takes place along the second axis, and the remaining variance is left
for the third axis.

The SVD transform is a simple and relatively fast method to align both constructs
globally. It normalizes their spatial orientation based on the spatial distribution of
vertex coordinates, but it does not handle parts of the constructs differently (e.g., it will
not straighten a bent structure).

This transform aligns properly origins of coordinate systems of both morphologies.
If the distribution of points in the 3D space is similar in both constructs, then the
corresponding axes will be parallel in both models, but in some cases their direction
may be opposite. This needs to be further addressed.

2.2.4 Symmetry operations

The SVD transform can, in some cases, yield opposite directions of axes for similar
constructs. This is perfectly valid, yet not acceptable for our application, as coordinates
resulting from two independent SVD transforms are directly compared. Therefore, addi-
tional configurations of the SVD-aligned models in the 3D space need to be tested. For
three axes and two directions, there are 23 = 8 possible configurations that correspond
to the following operations:

• identity,

• reflection in planes: xy, xz, yz,

• rotations by 180◦ about axes: x, y, z,

• inversion through the origin, (0, 0, 0).

One of the two models is subject to these transformations, and for each of them, the
match function is constructed and the overall value of dissimilarity, dissim, is calculated.
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Finally, the matching is chosen that minimizes dissim. This matching corresponds to
the best alignment of coordinate systems of the two compared structures.

2.3 Properties of the proposed measure

The time complexity of the dissimilarity measure is O(n2), where n is the number of
vertices in the more complex structure, n = max{|V1|, |V2|}.

Some dissimilarity measures can act as metrics (distance functions). This is generally
a desired property that allows to construct a metric space for a set S of compared
structures. For the dissimilarity measure d to be a metric, the following conditions must
be satisfied for all i, j and k in S:

d(i, j) ≥ 0 (2)

d(i, j) = 0 if and only if i = j (3)

d(i, j) = d(j, i) (4)

d(i, j) ≤ d(i, k) + d(k, j) (5)

The proposed dissim measure (1), given non-negative weights, yields non-negative
values for any pair of compared structures, as in (2). It is easy to demonstrate that it
also satisfies (3) and (4). We proved formally that one of the components, dD, satisfies
triangle inequality (5), but were not able to prove this property for the complete measure.

To investigate if (5) is met, 30 sets have been created, each containing 30 to 50 diverse
morphologies. These sets included 3D constructs that were either designed by a human,
evolved, or first designed manually and then tuned using evolutionary optimization
techniques. Among those evolved constructs, different fitness criteria were employed,
and some morphologies only differed in geometry while sharing identical structure. Each
of these sets formed a sample of experimental results, and for each set, a distance matrix
was computed using dissim. From each distance matrix, 107 random triplets were
selected and (5) was tested.

In matrices created with no geometric dissimilarity component (wG = 0), all triplets
satisfied (5). In matrices where wG > 0, the percentage of triplets that satisfied (5)
varied from 98.68% to 99.99% (99.54% on average). For those remaining 0.46% of
triplets that did not satisfy triangle inequality, the average relative degree of violating
(5) computed as

d(i, j)

d(i, k) + d(k, j)
− 1

was 6%. This means that while the triangle inequality condition may be unsatisfied
when the geometric component is employed, the proposed semimetric measure is “almost
a metric”. In this testing sample, the triangle inequality condition was extremely rarely
violated, and when it was, the amount of violation was small.

3 Spatial alignment case studies

To illustrate properties of the proposed dissimilarity measure and the way it deals with
body geometry, three pairs of differing creatures have been selected. This section demon-
strates the process of spatial alignment and matching for these pairs. Weights used for
(1) are shown in Table 1.

10



weight wV wD wN wG

value 10 1 0.2 2

Table 1: Weights used to compute aggregated dissimilarity in the three spatial alignment
case studies.

The weights were adjusted to focus on structural and geometrical aspects of mor-
phologies. The highest value of wV reflects the highest importance of differences in the
number of vertices in compared designs (whether a body part exists or not). An inter-
mediate value of wD corresponds with the desired importance of differences in degrees
of matched vertices. A larger value of wG indicates significance of the geometric dissim-
ilarity in the two compared morphologies. As neural aspects are not of interest here, a
small value of wN is set for only minor discrimination in the number of control units.

3.1 Highly similar evolved morphologies: hp2 and hp3

First, two highly similar morphologies are compared. Both were evolved independently
in two computer-simulated evolutionary processes, where fitness was proportional to the
height of the center of mass of each creature. Neural networks were not simulated, so
these were “passive” constructs. Their bodies are made of 9 vertices each and they
are visually similar, as shown in Fig. 4. Both constructs resemble a long vertical shaft
placed on a simple base.

Figure 4: Morphologies of hp2 and hp3.

Fig. 5 shows vertices projected onto the 2D plane (top: original xy coordinates,
bottom: two most significant coordinates after the SVD transform). In this case, the
SVD transform along with one symmetry operation (rotation by 180◦ about the z axis)
allowed to nearly perfectly align both structures.

Table 2 shows indexes of the matched vertices. These indexes correspond to those
shown in Fig. 5. It can be clearly seen that the structure-only matching is able to match
just a few vertices properly – pairs (1, 0), (3, 1) and (7, 4), while others are matched

11



-3

-2

-1

 0

 1

 2

 3

 4

-6 -5 -4 -3 -2 -1  0  1  2

0

1

2

3

4,5

6

7

8

0

1

2,6

3

4

5

7

8

-3

-2

-1

 0

 1

-4 -3 -2 -1  0  1  2  3  4  5  6  7

01

2

3

4

5
6

7
80

1
2

3
4

5

6

7,8

Figure 5: Original (top) and aligned (bottom) coordinates for creatures hp2 and hp3.
Vertex index labels are placed above hp2� and below hp3©.

inaccurately or completely incorrectly. The matching that uses geometrical information
is able to associate all vertices perfectly, including the three mentioned pairs.

hp2 0 1 2 3 4 5 6 7 8

hp3 (structure only) 6 0 5 1 7 3 2 4 8

hp3 (geometry-aware) 8 0 7 1 6 2 3 4 5

Table 2: The influence of geometry on the matching process. Indexes of matched vertices
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Figure 6: Morphologies of s3 and s4.

are shown.

Table 3 shows components of dissimilarity computed with and without geometri-
cal information. It is important to note that even though both approaches managed
to perfectly match structures, the structure-only approach matches vertices that are
completely unrelated in terms of body geometry. For the geometry-aware approach,
the small value of 2.658 corresponds to a minor geometrical difference of both spatially
aligned morphologies.

The value of dissim for the structure-only approach is not given to avoid direct
comparison with the geometry-aware approach. As the structure-only approach does
not support body geometry, it would be unfair to compute geometric difference while
the algorithm does not try to minimize it.

dV dD dN dG dissim

structure only 0 0 12

geometry-aware 0 0 12 2.658 7.717

Table 3: Components of dissimilarity as computed by the two approaches for hp2 and
hp3.

3.2 Differing evolved morphologies: s3 and s4

The s3 and s4 creatures were evolved independently in two computer-simulated evo-
lutionary processes, where fitness was proportional to the speed of movement. Neural
networks, equipped with simple receptors like touch, processed environmental stimuli
and controlled muscles which caused movement of bodies. The morphologies are made
of 5 vertices each and are both linear, as shown in Fig. 6. Both of them are bent (one
straight angle turn) and resemble a V-bar. Additionally, s3 has one arm bent in the z
axis, which is geometrically different from s4. The bending location is also different: it
is in the middle of the body of s4 while it is shifted in s3.

Fig. 7 shows vertices projected onto the 2D plane (left: original xy coordinates,
right: two most significant coordinates after the SVD transform). In this case, the SVD
transform was followed by one symmetry operation (rotation by 180◦ about the y axis).
Even though aligned morphologies are not identical, both arms are turned in the same
direction and geometric centers are close to each other.
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Figure 7: Original (left) and aligned (right) coordinates for creatures s3 and s4. Vertex
index labels are placed above s3� and below s4©.

Table 4 shows indexes of matched vertices. These indexes correspond to those shown
in Fig. 7. In both approaches, bending vertices are matched – the (0, 0) pair. Pairs
(2, 3) and (3, 1) are also matched both by the structure-only and the geometry-aware
algorithm. Note however vertices 1 and 4 of creature s3 : the geometry-aware algorithm
matched these outer vertices properly and consistently with the remaining parts, while
the structure-only approach did just the opposite.

s3 0 1 2 3 4

s4 (structure only) 0 2 3 1 4

s4 (geometry-aware) 0 4 3 1 2

Table 4: The influence of geometry on the matching process. Indexes of matched vertices
are shown.

Table 5 shows components of dissimilarity computed with and without geometrical
information. As in the previous experiment, both approaches managed to perfectly
match structures, but the structure-only approach matched vertices that are unrelated
in terms of body geometry. Introducing geometric awareness not only allowed to evaluate
geometric alignment, but also helped in matching corresponding parts of the body. For
spatially aligned morphologies, the value of 5.339 corresponds to a small (yet higher
than in the previous experiment with hp2 and hp3 ) geometrical difference.

dV dD dN dG dissim

structure only 0 0 13

geometry-aware 0 0 13 5.339 13.278

Table 5: Components of dissimilarity as computed by the two approaches for s3 and s4.

3.3 Diverse human-designed morphologies: Centipede and Lizard

Bodies of the Centipede and the Lizard creatures were manually designed. Centipede’s
neural network was also designed by a human. Lizard ’s neural network was pre-designed
and then further evolved with fitness proportional to speed of movement on land. Both

14



creatures share a similar body concept, but they are highly different in size and com-
plexity. Centipede consists of 52 vertices, while Lizard has only 15 vertices as shown in
Fig. 8. Despite this divergence, both morphologies have a backbone, symmetrical legs
and a head. Moreover, in the vertical axis, backbones of both creatures are elevated
with respect to leg endings.

Figure 8: Morphologies of Centipede and Lizard.

Fig. 9 shows vertices projected onto the 2D plane (top: original xy coordinates,
bottom: two most significant coordinates after the SVD transform). There was no need
for any symmetry operations after the SVD transform has been performed. Despite
high differences in size and complexity, the alignment is very good: geometric centers
are close to each other, backbones are lined up, heads point in the same direction, and
leg endings are on the same side of the xy plane.
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Figure 9: Original (top) and aligned (bottom) coordinates for creatures Centipede� and
Lizard©.

The structure-only algorithm was unable to match vertices of corresponding func-
tional parts (backbones, legs, heads) except from two backbone vertices. The geometry-
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aware approach successfully matched all parts of the Lizard ’s backbone with the Cen-
tipede’s backbone, and most parts of Lizard ’s legs with Centipede’s legs.

Table 6 shows components of dissimilarity computed with and without geometri-
cal information. Both approaches matched structures of morphology graphs, but the
geometry-aware approach took advantage of the additional geometrical information to
match functionally corresponding body parts (backbones, legs), while – again – the
structure-only algorithm paired vertices that are functionally unrelated.

dV dD dN dG dissim

structure only 37 74 125

geometry-aware 37 74 125 137.601 744.202

Table 6: Components of dissimilarity as computed by the two approaches for Centipede
and Lizard.

4 Conclusions

4.1 Performance of the dissimilarity estimation algorithm

The experiments described in Sect. 3 illustrated the way spatial alignment is performed
and the way the matching process works. Case studies that concerned selected pairs of
diverse structures confirmed that the SVD transform allows to align and match geome-
tries very accurately. An additional step of symmetry operations is sometimes necessary
to improve alignment of coordinate systems. Introducing geometric aspects into the mea-
sure of similarity not only allowed to evaluate geometric alignment, but also helped in
matching functionally corresponding parts of the body like bases, legs, backbones and
heads.

The alignment and vertex matching were consistent with expectations of a human
expert for structures of both similar and differing number of vertices. Experiments
with structures that differ highly in complexity showed that it is hard for a human to
identify the “best” matching of body parts (following common sense, not some numerical
evaluation of the alignment). It seems that irregular structures of high complexity or
highly differing structures may be the cases where the greedy algorithm employed here
could lose most to a more global and elaborate approach.

The algorithm presented here is a heuristic developed with speed as an important
requirement. Therefore the measure can be employed to compare large numbers of con-
structs (e.g. all pairs in a population) and efficiently produce reasonable matchings. It
also yields a numeric estimate of dissimilarity that reflects intuitive, geometric differ-
ence of structures perceived by a human. Weights allow to easily adjust importance of
individual aspects of dissimilarity.

Low complexity of the dissimilarity measure allows to compute a distance matrix
not only for a single population, but for all (e.g. 10,000 or 100,000) constructs that
appeared in an evolutionary process. The resulting distance matrix, after reducing
to two or three dimensions, reveals the time-space phenetic trajectory of the evolving
population of morphologies.
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4.2 Possible generalizations

The proposed algorithm has been tested on 3D geometries from the domains of artificial
life and evolutionary design. However, the model of morphology considered here is also
compatible with chemical and biochemical molecules, biologic forms and technical con-
structs, or structures that are built from a finite number of connected simple elements.
No specific assumptions are made regarding compared graphs.

The number of dimensions can be easily decreased to estimate dissimilarity of planar
(2D) geometries, or increased to consider more than three dimensions. Some dimensions
can be excluded from the SVD transform and symmetry operations (Sects. 2.2.3 and
2.2.4). The geometry could remain partially fixed in its original orientation which may
be useful in some applications (e.g., the vertical direction can be considered fixed for
plants).

There may be various properties assigned to vertices and edges. For artificial life
forms, considered features may include the number of attached neurons, sensors and
actuators, their parameters and connection weights, masses of body elements, their
frictional coefficients or assimilation abilities. These properties are domain-dependent
and can for example include bond strength, weight, material type, etc. The number and
nature of these properties are arbitrary, the only basic requirement being the ability to
estimate (dis)similarity of any pair of vertices.

To compute the total dissimilarity value, a simple weighted sum formula was em-
ployed here (Eq. 1 on page 8) to aggregate individual dissimilarity components. If
necessary, a non-compensatory model of evaluation can be used to meet specific prefer-
ences [37, 5].

4.3 Further work

The dissimilarity measure described in this article has been employed in a number
of applications, including reconstructions of sequences of random geometric mutations
from phenetic dissimilarity matrices, building taxonomies, selecting representative con-
structs based on the distance matrices, and identifying optimization goals based on
the geometry of optimized, structurally identical constructs. Due to space constraints,
these experiments will be described separately. Despite very good results obtained with
the heuristic algorithm presented here, it would be interesting to compare it with a
more global (exact) method of matching vertices. For example, the Hungarian algo-
rithm [26] may produce better matchings at the cost of higher time complexity, O(n3) –
cf. Sect. 2.3. Both approaches could be compared using some objective quality measure
like RMSD [29] to evaluate the tradeoff between time complexity and quality of the
matching. Note however that in artificial life and evolutionary design, simple formulas
like RMSD are not sufficient to evaluate the actual “quality of the matching”. Align-
ments suggested by experts usually consider functional elements of a body, and such
alignments are suboptimal in terms of the total distances between matched vertices.

The adjustment of weights in the weighted sum formula, and value domains of in-
dividual components of dissimilarity need further investigation. For some applications,
it may be advantageous to be able to normalize these components so that the meaning
of weights depends less on the size and complexity of compared structures. However,
a method to normalize ingredients of dissimilarity is not trivial. More theoretical work
is required regarding mutual dependencies of the four components of dissimilarity (e.g.,
dD and dG likely correlate), and how these interactions should influence setting weights.
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A related issue concerns size of compared structures. When chemical molecules are
compared, their size (i.e., distance between vertices or atoms) is naturally constrained.
As the algorithm described here does not assume any specific domain, scaled instances
of structures may exist in some applications. However, the scale (size) of structures
directly influences the value of the dG component, so that the result of comparing A*
and B* that are twice as big as A and B will proportionally increase dG. Therefore,
smaller structures may be considered similar more often than larger ones. This may or
may not be a desired effect, so normalization of structure size might be appropriate.

Measuring geometrical dissimilarity opens up a way to evaluate similarity of moving
constructs. Previously this was not possible, since in most cases the structure (connec-
tions of parts) does not change when a construct (a robot or an animal) moves. With
the geometric aspect measured, it will be possible to estimate similarity of sequences of
movement, and describe (evaluate) characteristics of the movement itself.

Finally, we would like to repeat experiments that concerned testing of global convex-
ity of the space of solutions [21] in various evolutionary optimization tasks of evolving
3D constructs and agents. Previously, only structural similarity was computed and
the correlation between quality of solutions and their similarity was relatively low. A
more sensitive measure that takes into account geometry of morphologies is able to
capture finer differences between these morphologies, allowing for better analysis of
the convexity of the search space. This may further allow for development of efficient
distance-preserving crossover operators [31, 46] for optimization of 3D constructs and
spatial graphs.
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