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Abstract

In this article, results of the automation of an abductive procedure are reported. This work
is a continuation of our earlier research [21], where a general scheme of the procedure has been
proposed. Here, a more advanced system developed to generate and evaluate abductive hypotheses
is introduced. Abductive hypotheses have been generated by the implementation of the Synthetic
Tableau Method. Before the evaluation, the set of hypotheses has undergone several reduction
phases. To assess usefulness of abductive hypotheses in the reduced set, several criteria have been
employed. The evaluation of efficiency of the hypotheses has been provided by the multi-criteria
dominance relation. To comprehend the abductive procedure and the evaluation process more
extensively, analyses have been conducted on a number of artificially generated abductive problems.

1 Introduction

Abductive reasoning aims at making sense of puzzling phenomena [14]. It has been argued that ab-
duction underlies all kinds of interpretative reasoning [24, 35], ranging from diagnostic reasoning and
anomaly-driven scientific explanation-seeking to natural language understanding and empathy. Its gen-
eral schema is this: from an observation A and the known rule if H, then A, infer H (cf. [32, 5.189]).
However, this schema may be elaborated in detail in different ways, which lead to different models of
abduction. Here we follow the algorithmic point of view, according to which an abductive hypothesis H
(or an abducible, as we shall also call it) “is legitimately dischargeable to the extent to which it makes
it possible to prove (or compute) from a database a formula not provable (or computable) from it as it
is currently structured” [11, p. 88].

In such a setting, an abductive problem may be expressed in terms of (logical) entailment: given
the set of formulas X (we shall call this set a database) and a formula A such that X does not entail A
(an abductive goal, or simply a goal), find a formula H (an abductive hypothesis or an abducible), such
that X and H together entail A. Thus abduction understood in algorithmic terms amounts to filling a
(deductive, or computational) gap between X and A.

There are four ingredients of the algorithmic account of abduction: (i) a basic logic (which determines
the language of specification of A, H and X), (ii) a proof method (which determines the exact mechanics
of the procedure of generation of abducibles), (iii) a hypotheses generation mechanism (which determines
the way the chosen proof method is applied in order to generate abducibles), and (iv) an implementation
of criteria for comparative evaluation of different abducibles.

Various procedures for generation of abducibles have been proposed so far; some are designed for
Classical Propositional Calculus (CPC for short) [1], others for more sophisticated propositional log-
ics [29, 26] or for first-order logic [16, 25, 28]. Those procedures, which are defined in a strictly logical
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setting, use, for example, the proof methods of analytic tableaux [1, 26, 25], of sequent calculi [26, 25], or
the dynamic proof method of adaptive logics [29, 28]. In this paper we will consider an implementation
of a procedure generating abductive hypotheses for CPC.1 The choice of this basic logic is motivated by
its simplicity. We have implemented an abductive procedure based on the Synthetic Tableaux Method,
STM [36] (Sect. 2), using the scripting programming language (Sect. 3). There are no other accounts of
the problem using STM. This work is a continuation of our earlier work [21], with a number of signifi-
cant innovations introduced into the procedure. The differences between the previous and the current
approaches are reported in Sect. 3.4.

From the algorithmic point of view, implementation of a procedure that generates abductive hy-
potheses is a relatively simple task. The challenging part is the computationally tractable evaluation
of hypotheses, as the space of relevant formulas may grow exponentially with the increase of the car-
dinality of the database and the number of distinct atomic formulas occurring in it (cf. [4, 10]). We
shall focus on the fourth ingredient: criteria for comparative evaluation of abductive hypotheses. The
set of criteria against which abducibles are evaluated comprises usually some combinations of relevance,
complexity and consistency (provided that the basic logic is consistency-sensitive). To these, we add
additional criteria of significance and operational complexity. We shall consider dominance relations
based on different subsets of the criteria just mentioned (Sect. 4).

2 Logical basis

2.1 The Synthetic Tableaux Method

STM is a model-seeking and a proof method. It was developed in detail in [36] as a decision procedure
for Classical Propositional Calculus (CPC) and for some non-classical logics (see also [37] and [38]). The
fundamental ideas underlying STM can be traced back to L. Kalmár’s proof of the completeness of the
CPC. Roughly speaking, a synthetic tableau for a formula B is defined as a family of interconnected
derivations of B and/or ¬B (the so-called synthetic inferences of B/¬B) on the basis of suitably defined
sets of certain basic constituents. The choice of the sets of constituents is logic-dependent; in the case
of CPC, they are consistent sets of literals occurring in Sub(B) or their negations.2 The formulas
occurring in a synthetic tableau for a formula B satisfy the subformula condition: they can only be
elements of Sub(B) or their negations. As a result, all the compound formulas occuring in a certain
synthetic inference s of a formula B are elements of Sub(B) or their negations, derived on the basis
of the literals of s (which are also elements of Sub(B) or their negations). The relevant derivability
relation is defined by means of the following ten rules (of a purely synthesizing character):

r1→
¬α

α→ β
r2→

β

α→ β
r3→

α,¬β
¬(α→ β)

r1∨
α

α ∨ β
r2∨

β

α ∨ β

r3∨
¬α,¬β
¬(α ∨ β)

r1∧
¬α

¬(α ∧ β)
r2∧

¬β
¬(α ∧ β)

r3∧
α, β

α ∧ β
r¬

α

¬¬α

STM is a semantically motivated tableau method, yet it is based on a direct reasoning. E.g., in the
case of CPC, each synthetic inference may be viewed as a syntactic codification of the calculation of the

1We assume the usual notion of a CPC-formula, in a language with ¬ (negation), ∨ (disjunction), ∧ (conjunction) and→
(implication) as primitive connectives (equivalence ≡ may be defined as usual, in terms of implication and conjunction).
We assume also the usual notion of a subformula of a given formula. We use Sub(B) to represent the set of all the
subformulas of a formula B and Sub(X) to represent the union of sets of subformulas of all the elements of a set X of
formulas. By a literal we mean a propositional variable or the negation of a propositional variable. A formula which is
not a literal is called a compound formula. If for two literals l1, l2 one of them is of the form pi and the other is of the
form ¬pi, then we say that l1 and l2 are complementary. If X = {A1, . . . , An} is a finite set of formulas, then by

∧
X we

mean the conjunction of its elements: A1 ∧ . . . ∧An. Similarly, by
∨

X we mean the disjunction: A1 ∨ . . . ∨An.
2Precise definitions of synthetic inferences and synthetic tableaux can be found in [36] and [39].
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value of B under a valuation constrained by the values of literals present in this synthetic inference. Thus
it also follows that the complexity of STM for CPC is bounded by the complexity of the truth-tables
method.

For the purpose of modelling abductive reasoning, the following, more general notion of a synthetic
tableau is introduced. A synthetic tableau for a derivation of a formula B on the basis of a set of
formulas Y is defined as a family of interconnected derivations (again, synthetic inferences of B on the
basis of Y ) of elements of Y ∪{B} or their negations, on the basis of consistent sets of literals occurring
in Sub(Y ∪ {B}) or their negations. A synthetic inference s of a formula B on the basis of the set
Y = {D1, . . . , Dn} is called a success iff either there exists at least one Di ∈ Y such that ¬Di is an
element of s, or B is an element of s. It is called a failure iff all of the following are elements of s:
D1, . . . , Dn,¬B, that is, iff it contains every formula from the database and negation of the abductive
goal. A set Y entails a formula B (Y |= B) iff there exists a tableau Ω for the derivation of B on the
basis of Y such that each element of Ω is a success.3 All the details and metatheorems concerning STM
can be found in [39]. Here we offer an example that shall give an idea of how the STM works. This is
a synthetic tableau Ω1 for the derivation of B = (p→ q) ∧ (p→ r) on the basis of Y = {p→ (q ∨ r)}:

p

q
q ∨ r

p → (q ∨ r)
p → q

r
p → r

(p → q) ∧ (p → r)

¬r
¬(p → r)

¬((p → q) ∧ (p → r))
†

¬q
¬(p → q)

¬((p → q) ∧ (p → r))

r
q ∨ r

p → (q ∨ r)
†

¬r
¬(q ∨ r)

¬(p → (q ∨ r))

¬p
p → q
p → r

(p → q) ∧ (p → r)

Consider the leftmost synthetic inference (call it s) of the tableau Ω1. Literals p, q, r are introduced as
basic constituents occurring in Y ∪{B}. The order in which they are introduced is arbitrary. (However,
it may be of importance with respect to complexity of a tableau.) Each time a literal l1 is introduced as
the i+ 1st term of s a new synthetic inference is created, which is identical with s up to their ith terms
(if there are any) and with a literal complementary to l1 as its i + 1st term. The compound formulas
as introduced by applications of the following rules: q ∨ r results from q by r1∨, p→ (q ∨ r) results from
q ∨ r by r2→, p → q results from q by r2→, p → r results from r by r2→, and (p → q) ∧ (p → r) results
from (p→ q) and (p→ r) by r3∧.

Tableau Ω1 consists of five synthetic inferences; two of them, marked by †, are failures (and their
existence proves that the set {p→ (q∨r)} does not entail the formula (p→ q)∧(p→ r)). The remaining
three are successes.

3A tableau Ω is a proof of a formula B (that is, of the fact that ∅ |= B) iff each element of Ω is a synthetic inference
of B. Intuitively it can be said that a formula B is proved iff all the possible attempts at synthesizing B or ¬B on the
basis of the consistent sets of their subformulas (with the sets of basic constituents of B or their negations interpreted as
representing “initial conditions” or “basic assumptions”) lead to B.
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In a given synthetic inference s, all the formulas except literals are introduced as derived on the
basis of the preceding formulas. As a result, all compound formulas of s are derived on the basis of the
set of literals occurring in s. It may happen, however, that not all literals in a given synthetic inference
are needed in order to derive compound formulas occurring in this inference. Consider the following
sequence:

s1 = ¬p, p→ q, q, p→ r,¬r, (p→ q) ∧ (p→ r)

This is a slightly modified rightmost synthetic inference of the tableau Ω1. Notice that q and ¬r are in a
sense superfluous in s1: all the compound formulas are derived on the basis of ¬p. In other words, only
¬p is an entangled literal in s1 – that is a literal which is relevant for s1 being a success or a failure.4

2.2 Modelling abduction by STM

Given a set of premises (a database) X and a formula A such that X does not entail A (an abductive
goal), the procedure of generating abducibles is defined as follows:

(T1) A synthetic tableau Ω for a derivation of A on the basis of X is generated.

(T2) Suppose that Ω has k failures.5 For each failure si of Ω, the entangled literals Ci
1, . . . , C

i
n of si

are extracted.

(T3) For each failure si, a formulaDi = ¬(Ci
1∧. . .∧Ci

n) is built. Next, for the set E = {D1, . . . , Di, . . . , Dk}
a conjunction

∧
E is created.

(T4) The formula
∧
E is transformed into the disjunctive normal form F1 ∨ . . .∨Fm. Each disjunct Fj

of E is an abducible for the formula A with respect to X.

Finally, for each non-empty subset S of {F1, . . . , Fm}, the disjunction
∨
S is also an abductive

hypothesis for A with respect to X. Observe that we could also consider any conjunction of the
abducibles obtained so far as an abducible. However, we will not do this for the sake of minimality of
the abductive hypotheses.

As mentioned above, implementation of a procedure that generates abductive hypotheses is a rel-
atively simple task. As a result, the choice of proof method, however important, is not crucial. We
decided to employ STM as we wanted to avoid some well-known problems of resolution techniques,
albeit this comes at a computational price, of which we are aware.6

3 Generation and reductions of the set of abductive hypotheses

3.1 Implementation of the synthesizing algorithm

Details of the synthesizing algorithm were given in [21]; in this section, only a concise description of the
implementation of the STM will be provided, along with the explanation of its application in solving
abductive problems. The implementation was performed using the scripting language, FramScript,
which is a part of the Framsticks platform [23]. The platform is especially suitable for designing,
testing, and optimizing connectionist [18] and multi-agent [22] models; it has been previously used to
optimize fuzzy logic controllers [13]. While other programing languages could be chosen at this stage,

4A precise definition of entanglement is given in [39].
5Let us add that since X does not entail A, Ω must contain – by soundness of STM – at least one failure, thus we

know that k ≥ 1.
6In general, STM fulfills criteria for a system amenable to computerized proof search [3, p. 18]: (a) proof search

methods are efficient and do not require too many “arbitrary” choices, and (b) proof lengths are not excessively long.
From a computational point of view, STM is at least as good as the truth-tables method, thus STM may compete with
analytic methods at least in the case of certain well-known classes of cases (see [6]).
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this particular environment has been used because of the available library of functions for processing
logic formulas [20], support for distributed or connectionist logic models, and because of support for
various optimization algorithms that will be useful in further experiments.

The implementation of the Synthetic Tableau Method builds a binary tree of logical formulas. Before
execution of the synthesizing function, all the formulas of an abductive problem are decomposed into
subformulas. From the set of subformulas the set of all variables is acquired. The list of variables is then
passed to the function that builds the binary tree. Each binary split (including the initial branching) is
generated by taking the variables from the passed list of variables. The tree is built in a symmetrical
manner: each branching of the same depth splits into identical pairs of complementary literals. The order
of inserted literals depends on the order of the variable list, which is in turn determined by the order of
generated subformulas. The new formulas appear on a branch as a result of applying every possible rule
to the formulas already present in the branch, however, only the formulas from the initially generated
set of subformulas, or the negations of these subformulas, may be added. Each branch is expanded until
there are no variables left to make a binary split, or all the formulas of an abductive problem (or their
negations) are added. No additional pruning is performed.

After the generation of the whole tableau, the failure branches are extracted. For each failure branch
found, the set of the entangled literals is retrieved. Subsequent steps of the processing of the acquired
literals and generation of the abducibles are described in Sect. 3.4.

3.2 Optimization issues

There are two computational bottlenecks in our framework. Firstly, the effective use of the synthetic
rules is an issue: the optimal order of the application of the rules, or selection of the formulas to apply
the rules to, are yet to be settled. For the time being, arbitrary choices and brute force approach are
in effect. The other problem is that despite introduction of reduction, simplification and evaluation
(Sect. 3.4 and 4.1), the set of abductive hypotheses might still be large since its size depends on
the complexity of the considered problem. Although for the problems analyzed here reduction and
simplification mechanisms work just fine, in general an overflow of the extensive amount of abducibles
may be an issue.

A solution to these problems may be a heuristic or meta-heuristic approach. The optimization
perspective includes a possibility to guide the search for interesting hypotheses using either some sin-
gle parameter as their characteristics, or to employ a novel approach introduced in [21] consisting in
considering multiple criteria simultaneously. The efficiency of heuristic search algorithms like multiple
random start local search, Tabu search, simulated annealing, particle swarm, or evolutionary tech-
niques [34, 12, 5] will be increased with the appropriate fitness landscape, so fitness-distance analyses
are highly recommended [31, 15, 40].

3.3 The abductive problems considered and the problem generator

83 derivation problems have been considered, 14 of which have been created by a logician. The problems
are numbered and denoted as Pxx in this paper, where xx is the number (the ID) of the problem. The
problems discussed in more detail in the text are presented in the table in Sec. 4.2. Four of the expert-
designed problems (P2, P9, P10, P11) were analyzed in earlier work [21]; the first three ones were also
examined with a customizable filter denoted (A) in Sect. 3.4. In these three cases the results obtained
were identical with and without the filter (A), and i.a. for this reason the filter is not used in this
work, although the results could vary on a different sample of abductive problems. A new example of
an expert-designed problem is P29; the majority (69) of abductive problems were however generated
according to the following automated procedure:

• first, the set S containing four propositional variables and their negations was fixed, and then its
power set 2S was generated,

• each element of 2S containing a pair of complementary literals was excluded,
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• out of each two elements of 2S of the same size of which one contained all the literals complementary
to the literals in the second set, only one was left,

• from each of the remaining non-empty subsets X,Y of S, every possible formula of the form∧
X →

∨
Y , where each literal might occur only once in the whole formula, was generated,

• then, a number of formulas were drawn from the set of all formulas generated in the previous step.
Each formula had equal chance to be drawn, and for each formula the test whether to draw it
or not was provided – thus the distribution of the number of the drawn formulas at one go was
binominal. The selected formulas constituted the set of premises,

• the abductive goal was formed as a conjunction of two random, non-complementary literals each
of which had to be present in at least one formula in the set of the premises,

• finally, a test whether A logically follows from X was conducted; pairs X,A which failed the test
were considered abductive problems.

Following the above procedure it is unlikely (though still possible) to generate an inconsistent
database. However, the entailment test conducted at the last step excludes the cases of inconsistent
X. On the other hand, it is still possible to obtain a database X and a goal A such that X ∪ {A}
is inconsistent (see P21, P55, P81) or such that X ∪ {A} is consistent but still some of the generated
abducibles are inconsistent with X (like in the cases of P7, P18, P37, P58).

3.4 The set of abductive hypotheses and its reductions

For an abductive problem, the set of abductive hypotheses is generated by a procedure that goes through
the following stages. First, a relevant synthetic tableau is generated (cf. (T1) in Section (2.2)), then:

1. The sets of entangled literals corresponding to the synthetic failures (as described in Sect. 2) are
created – see (T2).

2. Subsequently, a number of reduction techniques are applied as described below. To illustrate this
process, let us consider the following example:

∆1 = {{p, q, r}, {p, q,¬r}, {p, q}, {¬p, q, s}, {¬p, q, t}}

At this stage, each pair of the sets of literals – L1 and L2 – whose symmetric difference7 contained a
pair of complementary literals (and only this pair), is replaced by their intersection: Li = L1∩L2.
This is done recursively until no such pair is left. After this step we are left with the following
structure:

∆2 = {{p, q}, {p, q}, {¬p, q, s}, {¬p, q, t}}

3. Then, all but one of the identical clauses of entangled literals are removed:

∆3 = {{p, q}, {¬p, q, s}, {¬p, q, t}}

4. Next, the entangled literals are “complemented” (that is, for each literal its complement is consid-
ered). Each Di is thus represented as a clause of literals, and the relevant formula E is represented
as a family of clauses (see stage (T3)). In our example we arrive at:

∆4 = {{¬p,¬q}, {p,¬q,¬s}, {p,¬q,¬t}}

The structure generated up to this point corresponds to a formula in conjunctive normal form
(CNF).

7Symmetric difference is the union of two differences: L1 	 L2 = (L1 \ L2) ∪ (L2 \ L1).
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5. The family of the remaining clauses of entangled literals is transformed into a formula in disjunctive
normal form (DNF, this stage corresponds to (T4)). Thus each clause now represents a conjunctive
clause. Then all repetitions of literals in clauses are removed. This yields the following formula
(in clausal representation):

∆5 = {{¬p, p}, {¬p, p,¬q}, {¬p, p,¬t}, {¬p,¬q, p}, {¬p,¬q}, {¬p,¬q,¬t},
{¬p,¬s, p}, {¬p,¬s,¬q}, {¬p,¬s,¬t}, {¬q, p}, {¬q, p}, {¬q, p,¬t}, {¬q, p},
{¬q}, {¬q,¬t}, {¬q,¬s, p}, {¬q,¬s}, {¬q,¬s,¬t}}

6. All the conjunctive clauses containing at least one pair of complementary literals are removed
(subsequently, inconsistent sets are filtered out):

∆6 = {{¬p,¬q}, {¬p,¬q,¬t}, {¬p,¬s,¬q}, {¬p,¬s,¬t}, {¬q, p}, {¬q, p},
{¬q, p,¬t}, {¬q, p}, {¬q}, {¬q,¬t}, {¬q,¬s, p}, {¬q,¬s}, {¬q,¬s,¬t}}

7. All but one of the identical clauses are cleared out:

∆7 = {{¬p,¬q}, {¬p,¬q,¬t}, {¬p,¬s,¬q}, {¬p,¬s,¬t}, {¬q, p}, {¬q, p,¬t},
{¬q}, {¬q,¬t}, {¬q,¬s, p}, {¬q,¬s}, {¬q,¬s,¬t}}

8. Then, steps (2) and (3) are once again applied to the clauses of literals:

∆8 = {{¬q}, {¬q,¬t}, {¬q,¬s}, {¬p,¬s,¬t}, {¬q,¬s,¬t}}

9. All conjunctive clauses represented by sets of literals that are strict supersets of some other sets
of literals are removed:

∆9 = {{¬q}, {¬p,¬s,¬t}}

(A) In an additional reduction stage (A), for the problems where the abductive goal consisted of a
single literal, all the conjunctive clauses containing this literal can be cleared out. Assuming that
in our example the abductive goal is ¬q, we may also clear out the subset containing this literal,
and thus our only abductive hypothesis would be (¬p ∧ ¬s) ∧ ¬t.

(10) After these preliminary reductions we arrive at a set of conjunctive clauses. Each non-empty
subset of this set (including singletons and the set itself) is then expressed as a formula in DNF.
The output of this process is the set of abductive hypotheses.

(11) For this set, the final simplifying reduction has been performed using the Quine-McCluskey algo-
rithm.

The Quine-McCluskey algorithm [27, 17] is also referred to as the method of prime implicants.
The algorithm, sometimes called the tabulation method, is a more efficient version of the “Karnaugh
mapping” [41, 19]. This procedure has been applied to each hypothesis to simplify it, which allowed
to identify subsets of hypotheses logically equivalent on the grounds of CPC. This final reduction step
resulted in further decrease of the number of hypotheses, which – after this step – were guaranteed to
be semantically unique.

Introducing all the reduction techniques described above is a major improvement compared to our
previous work [21], where no such methods were used, and our considerations were based on hypotheses
resulting from a procedure going through stages (1),(4),(5) and (10) – called here the ‘basic procedure’.
Stages (2),(3) and (6)-(9), which are novel in this work, are of purely reductive character. Their aim
is to reduce the space of abducibles by eliminating, first, “repetitions” (that is, logically equivalent but
syntactically distinct formulas), and second, hypotheses which are logically too strong in that they entail
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Figure 1: Efficiency of the reduction stages described in the text. Note that the vertical axis is doubly
logarithmic to include sizes of non-reduced sets of hypotheses; the solid line is provided for reference
as y = x. To increase readability of the plot, where multiple problems yielded the same number of
hypotheses after final reduction (the same value on the x axis), the number of hypotheses after non-
final reductions (values on the y axis) have been averaged so that such problems constitute one point
on the plot.

some other abducibles which, at the same time, are syntactically less complex (this is the goal of stage
(9)).

The efficiency of the reduction stages described above is demonstrated in Fig. 1. Label ‘basic
procedure’ refers to the set of hypotheses obtained by the original procedure as in [21], ‘stages 1-5,10’
refers to the set of hypotheses generated according to stages (1)-(5) and (10) (thus reduction steps (2)
and (3) are included), etc. ‘Final simplification’ refers to the outcomes of the whole procedure (1)-
(11) with all reduction stages employed. Note that the vertical axis covers a huge range of numbers
of hypotheses because it is doubly logarithmic; this illustrates enormous reductions that take place in
each reduction stage.8 The graph shows that the amount of reduction provided by each stage differs

8Let us describe one particular example here. In the case of problem P29 (see table below) the database and the

abductive goal are expressed by the use of five distinct variables. There are exactly 22
5

different truth-functions that may
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P82P83

Pxx: stages 1−10
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dominance relation

Figure 2: Efficiency of the final reduction stage (shown as a reference: solid line, y = x) compared to
preliminary reductions (stages 1-10, Pxx labels show IDs of individual problems) and reductions yielded
by the application of the dominance relation using three evaluation criteria (triangles correspond to
labels in Fig. 3).

highly from problem to problem. While there is no absolute dependence between the final number of
unique hypotheses and the number of hypotheses obtained from earlier reduction stages (the lines are
not monotonically increasing), one can notice some correlation as a general increasing trend is visible.
The raw number of hypotheses is the poorest predictor of the final number of unique hypotheses. The
characteristics of the last stage (1-10) before the ultimate simplification process is more clearly shown in
Fig. 2, where the vertical axis is singly logarithmic, just as the horizontal axis. This figure additionally
shows reduction of the set of hypotheses provided by the dominance relation described in the following
section.

be expressed by formulas formed in the standard language of CPC with five distinct variables. And yet we come across
2102400 abductive hypotheses (formulated with only the five variables) generated by the basic procedure. When the space
of abducibles is generated according to the pattern described in Section 3.4, we get 15 hypothesis after the preliminary
reductions and after the final stage (11) we are left with 14 of them.

Observe, however, that the reduction mechanism applied in this work is strongly logic dependent, thus it would produce
incorrect results were we to depart the safe ground of CPC. We find it interesting to generate abductive hypotheses
by means of a non-classically designed proof procedure and/or to evaluate abductive hypotheses with non-classically
motivated criteria. In these cases the results reported in the previous work [21] would be a more appropriate starting
point.
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4 Identifying interesting hypotheses using multi-criteria eval-
uation

4.1 Evaluation criteria

There exist several criteria meant to evaluate abductive hypotheses [1]. Here we will briefly comment on
how they are implemented. While the STM might be used to perform calculations important to establish
values of the criteria, to speed up the evaluation process we decided to implement the Analytic Tableaux
Method (ATM) and use it as a main proof method. The increase in speed in our case is due to the higher
algorithmic explicitness of the ATM; as we have already observed, there are no good heuristics guiding
the priorities of rules applications in STM. To speed up the process even more, the syntactic analysis of
the branches of analytic tableaux is done on the fly (not after generation of the whole tableau), which
also avails the pre-pruning techniques. Each criterion is implemented as a function which takes some
arguments and returns an integer value; arrows indicate preference (↑ the more the better, ↓ the less
the better).

Recall that X represents a database, A represents an abductive goal and H an abductive hypothesis
(abducible). Let us also recall for clarity that an analytic tableau for a formula F is a tableau with
formula ¬F in the root.

1. ↑ Consistency – this function builds an analytic tableau for the formula
∧
X → ¬H. If the tableau

is closed, the function returns 0, otherwise it returns 1. The idea behind this criterion is that with
CPC as the basic logic, H should be consistent with X.

2. ↑ Significance – the function builds an analytic tableau for the formula H → A. If the tableau is
closed, the function returns 0, which means that H itself entails A and the set of premises (the
database) is not significant; otherwise the function returns 1. (Thus the criterion measures the
‘significance’ of the database relative to the hypothesis.)

3. ↓ Complexity – this function takes one argument (the formula H) and returns the number of
distinct variables found in the formula.

4. ↓ Operational Complexity – this function takes one argument (the formula H) and returns the
number of two-argument operators used to build the formula (that is, the number of occurrences
of ∧ and ∨; recall that H after the final simplification stage is expressed with ¬, ∧ and ∨ only).
The two complexities are somewhat converging, nevertheless in some cases they yield different
results – consider for example “fat” expressions, which are lengthy with a relatively small number
of distinct variables [8].

5. ↓ Overlapping – this function takes two arguments (the formula A and the hypothesis H) and
returns the number of variables each of which occurs in both formulas.9

After the evaluation of a hypothesis using each of the criteria described above, the criteria values may
be aggregated or not, depending on the research goals. In this work we avoid aggregation and thus avoid
introducing trade-offs between these criteria. Since they are often conflicting, we use the multi-criteria
dominance relation to identify hypotheses that are better than others in any aspect, and to capture a
human goal of finding interesting abductive hypotheses. Formally, we assume that hypothesis H1 is
better than H2 (i.e., dominates it), when H1 is not worse (which means it is better or equally good)
than H2 on all criteria, and H1 is strictly better than H2 on at least one of these criteria. A hypothesis
H that is not dominated by any other hypotheses in the set is called a non-dominated hypothesis, an
efficient hypothesis, or a Pareto optimal hypothesis [9, 7].

9This criterion was called “Relevance” in the previous work [21]. The idea was to maintain the connection of contents
of H and A, thus Relevance was maximized. However, maximized Relevance mainly favoured hypotheses syntactically
identical with abductive goals. For this reason the name of the criterion as well as its preference were changed.
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Figure 3: Efficiency of reduction by the dominance relation: removal of the dominated hypotheses
according to their 3-criteria evaluation (C3). Note that the vertical axis is linear while the horizontal
axis remains logarithmic.

Note an interesting characteristic of the dominance relation defined above: introducing more criteria
will likely increase the number of non-dominated hypotheses as long as the criteria are in conflict (i.e.,
when comparing two hypotheses, one hypothesis is better according to some criterion and worse accord-
ing to some other criterion). However, adding new criteria may also reduce the set of non-dominated
hypotheses, as new criteria may provide additional information that will differentiate hypotheses which
were previously identically evaluated. In any case, the dominance relation allows one to reduce the set
of hypotheses and thus to obtain a smaller set of interesting ones without the need of introducing strong,
arbitrary assumptions (like imposing some order or hierarchy of criteria) and aggregation models (like
a weighted sum of criteria values).

For each problem, each pair of hypotheses in the set of unique hypotheses that resulted from the
final simplification reduction was compared using the multi-criteria dominance relation in order to find
subsets of non-dominated hypotheses. This allowed for further reduction of the number of hypotheses, as
Fig. 3 (and Fig. 2) illustrates. For most problems considered here, the set of non-dominated hypotheses
was small enough to be analyzed by a human expert, but for larger problems, the dominance relation may
be too weak to significantly reduce the set. The trend is however encouraging, and seems quasi-linear
with exponentially increasing size of the set of unique hypotheses.
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4.2 Discussion of the outcomes of the reduction based on multi-criteria dom-
inance

The table below summarizes results of multi-criteria evaluation for problems that are discussed in the
text. For each problem, non-dominated hypotheses are shown for the following sets of criteria:

• (C3) Consistency, Significance, Complexity

• (C4a) Consistency, Significance, Complexity, Overlapping

• (C4b) Consistency, Significance, Complexity, Operational Complexity

• (C5) Consistency, Significance, Complexity, Overlapping, Operational Complexity.
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Problem ID,
number of variables,
size of the set of hypotheses:
basic procedure (stages 1,4,5,10),
preliminary reductions (stages 1–10),
final simplification (stages 1–11)

set of formulas
(“database”)

abductive
goal

non-dom
count for:
C3
C4a
C4b
C5

criteria
values

non-dominated hypotheses

P2

variables: 3

29,22−1=3,3

(p∧r)→q
(¬r→q)→p

q

1 1,1,1 r

1 1,1,1,0 r

1 1,1,1,0 r

1 1,1,1,0,0 r

P7

variables: 4

2108,23−1=7,6

(p∧q)→(s∨¬r)
p→(q∨¬r)
(p∧¬q)→r
q→(¬r∨¬s)

r∧q

5

1,1,3
0,1,2
1,1,3
1,0,2
0,1,2

(p∧¬q)∨(q∧r)
p∧r
r∧(p∨q)
q∧r
p∧¬q

5

1,1,3,2
0,1,2,1
1,1,3,2
1,0,2,2
0,1,2,1

(p∧¬q)∨(q∧r)
p∧r
r∧(p∨q)
q∧r
p∧¬q

4

0,1,2,1
1,1,3,2
1,0,2,1
0,1,2,1

p∧r
r∧(p∨q)
q∧r
p∧¬q

4

0,1,2,1,1
1,1,3,2,2
1,0,2,2,1
0,1,2,1,1

p∧r
r∧(p∨q)
q∧r
p∧¬q

P11

variables: 5

212,23−1=7,7

(¬r∨q)→s
¬t→(p∧q)
q→¬r

q∧s

2
1,1,1
1,1,1

q
¬t

1 1,1,1,0 ¬t

2
1,1,1,0
1,1,1,0

q
¬t

1 1,1,1,0,0 ¬t

P16

variables: 4

254,23−1=7,7

(r∧¬s)→(p∨q)
(p∧q)→(¬r∨¬s)
((p∧q)∧¬s)→¬r
((p∧r)∧¬q)→s
(r∧¬s)→(p∨¬q)
p→(r∨¬s)
(s∧¬q)→(p∨¬r)
((p∧s)∧¬r)→¬q
p→¬r

s∧q

1 1,1,1 r

1 1,1,1,0 r

1 1,1,1,0 r

1 1,1,1,0,0 r

P17

variables: 4

216,23−1=7,7

r→((p∨q)∨¬s)
p→(q∨r)
(q∧¬r)→p
(r∧¬q)→(p∨¬s)
¬q→(p∨s)
(p∧¬r)→¬q
¬q→(p∨¬s)
(p∧¬q)→¬s
(q∧¬s)→r

¬s∧r

2
1,1,1
1,1,1

¬q
¬s

1 1,1,1,0 ¬q

2
1,1,1,0
1,1,1,0

¬q
¬s

1 1,1,1,0,0 ¬q

P18

variables: 4

2108,23−1=7,7

((p∧r)∧s)→q
((p∧q)∧s)→r
q→(p∨s)
p→((r∨¬q)∨¬s)
((p∧r)∧¬s)→¬q
((p∧s)∧¬q)→¬r
q→(r∨s)

p∧r

1 1,1,2 p∧q

2
1,1,2,1
0,1,2,0

p∧q
q∧¬s

1 1,1,2,1 p∧q

2
1,1,2,1,1
0,1,2,0,1

p∧q
q∧¬s

P21

variables: 4

212,23−1=7,7

s→((p∨q)∨r)
(q∧s)→(p∨r)
((p∧q)∧¬s)→r
q→p
((p∧s)∧¬q)→r
(p∧r)→(s∨¬q)
((p∧r)∧¬q)→s
s→(p∨¬q)
(¬q∧¬s)→p
q→(s∨¬r)
¬r→q
q→¬s

¬s∧p

3
0,1,1
0,1,1
0,1,1

q
¬r
¬s

2
0,1,1,0
0,1,1,0

q
¬r

3
0,1,1,0
0,1,1,0
0,1,1,0

q
¬r
¬s

2
0,1,1,0,0
0,1,1,0,0

q
¬r

P29

variables: 5

2102400,24−1=15,14

p→(q∨r)
¬t→¬r
q→(s∨t)
s→(¬t∨r)

s

2
1,1,2
1,1,2

p∧¬t
q∧¬t

2
1,1,2,0
1,1,2,0

p∧¬t
q∧¬t

2
1,1,2,1
1,1,2,1

p∧¬t
q∧¬t

2
1,1,2,0,1
1,1,2,0,1

p∧¬t
q∧¬t

P37

variables: 4

2243,24−1=15,15

r→((p∨q)∨s)
(p∧q)→(s∨¬r)
q→(p∨s)
(p∧q)→(¬r∨¬s)
p→¬s

q∧r

9

1,1,4
1,1,4
1,1,4
1,1,4
0,1,2
1,0,2
1,1,4
1,1,4
1,1,4

r∧(q∨¬p)∧(q∨¬s)
(p∨q)∧(p∨r)∧(q∨s)∧(r∨s)
(p∧s)∨(q∧r)∨(r∧¬p∧¬s)
q∧(r∨¬p)∧(r∨¬s)
p∧s
q∧r
(q∨r)∧(q∨¬p)∧(q∨¬s)∧(r∨¬p)∧(r∨¬s)
(p∧s)∨(q∧r)∨(q∧¬p∧¬s)
(p∧s)∨(q∧r)∨(q∧¬p∧¬s)∨(r∧¬p∧¬s)
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Problem ID,
number of variables,
size of the set of hypotheses:
basic procedure (stages 1,4,5,10),
preliminary reductions (stages 1–10),
final simplification (stages 1–11)

set of formulas
(“database”)

abductive
goal

non-dom
count for:
C3
C4a
C4b
C5

criteria
values

non-dominated hypotheses

9

1,1,4,2
1,1,4,2
1,1,4,2
1,1,4,2
0,1,2,0
1,0,2,2
1,1,4,2
1,1,4,2
1,1,4,2

r∧(q∨¬p)∧(q∨¬s)
(p∨q)∧(p∨r)∧(q∨s)∧(r∨s)
(p∧s)∨(q∧r)∨(r∧¬p∧¬s)
q∧(r∨¬p)∧(r∨¬s)
p∧s
q∧r
(q∨r)∧(q∨¬p)∧(q∨¬s)∧(r∨¬p)∧(r∨¬s)
(p∧s)∨(q∧r)∨(q∧¬p∧¬s)
(p∧s)∨(q∧r)∨(q∧¬p∧¬s)∨(r∧¬p∧¬s)

4

1,1,4,4
1,1,4,4
0,1,2,1
1,0,2,1

r∧(q∨¬p)∧(q∨¬s)
q∧(r∨¬p)∧(r∨¬s)
p∧s
q∧r

4

1,1,4,2,4
1,1,4,2,4
0,1,2,0,1
1,0,2,2,1

r∧(q∨¬p)∧(q∨¬s)
q∧(r∨¬p)∧(r∨¬s)
p∧s
q∧r

P55

variables: 4

21024,26−1=63,37

(p∧q)→r
(q∧s)→(p∨¬r)
(p∧¬s)→(q∨¬r)
((p∧r)∧s)→¬q
(r∧¬q)→p
s→((p∨¬q)∨¬r)
(¬r∧¬s)→p
¬s→(q∨r)
q→r
¬s→q

¬s∧¬r

4

0,1,2
0,1,2
0,1,2
0,1,2

q∧s
q∧¬r
¬q∧¬s
(q∧s)∨(¬q∧¬s)

4

0,1,2,1
0,1,2,1
0,1,2,1
0,1,2,1

q∧s
q∧¬r
¬q∧¬s
(q∧s)∨(¬q∧¬s)

3
0,1,2,1
0,1,2,1
0,1,2,1

q∧s
q∧¬r
¬q∧¬s

3
0,1,2,1,1
0,1,2,1,1
0,1,2,1,1

q∧s
q∧¬r
¬q∧¬s

P58

variables: 4

227,26−1=63,37

((p∧q)∧s)→r
q→(p∨r)
p→(q∨¬r)
s→(p∨r)
r→(p∨s)
(p∧¬q)→(s∨¬r)
(¬q∧¬r)→p
¬s→p
s→(q∨r)

¬s∧r

1 1,1,2 (r∧¬s)∨(s∧¬r)

3
1,1,2,2
0,1,2,1
0,1,2,1

(r∧¬s)∨(s∧¬r)
¬p∧¬s
¬p∧¬r

6

1,1,3,2
0,1,2,1
1,1,2,3
0,1,2,1
0,1,2,1
1,0,2,1

¬s∧(r∨¬p)
s∧¬r
(r∧¬s)∨(s∧¬r)
¬p∧¬s
¬p∧¬r
r∧¬s

5

1,1,3,2,2
1,1,2,2,3
0,1,2,1,1
0,1,2,1,1
1,0,2,2,1

¬s∧(r∨¬p)
(r∧¬s)∨(s∧¬r)
¬p∧¬s
¬p∧¬r
r∧¬s

P66

variables: 4

216,27−1=127,57

q→p
((p∧r)∧¬q)→s
((p∧r)∧s)→¬q
p→(r∨¬s)
(¬q∧¬r)→p
¬s→(q∨r)
q→(s∨¬r)

r∧s

1 1,1,1 s

3
1,1,2,0
1,1,1,1
1,1,2,0

(p∧¬q)∨(q∧¬p)
s
p∧¬q

1 1,1,1,0 s

2
1,1,1,1,0
1,1,2,0,1

s
p∧¬q

P80

variables: 4

2144,29−1=511,156

((p∧¬r)∧¬s)→q
¬q→((p∨r)∨¬s)
r→(p∨¬s)
p→(s∨¬r)
(¬r∧¬s)→p
(q∧r)→s
(¬r∧¬s)→q

s∧¬q

2
1,1,2
1,1,2

p∧¬q
¬q∧¬r

2
1,1,2,1
1,1,2,1

p∧¬q
¬q∧¬r

2
1,1,2,1
1,1,2,1

p∧¬q
¬q∧¬r

2
1,1,2,1,1
1,1,2,1,1

p∧¬q
¬q∧¬r
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Problem ID,
number of variables,
size of the set of hypotheses:
basic procedure (stages 1,4,5,10),
preliminary reductions (stages 1–10),
final simplification (stages 1–11)

set of formulas
(“database”)

abductive
goal

non-dom
count for:
C3
C4a
C4b
C5

criteria
values

non-dominated hypotheses

P81

variables: 4

264,29−1=511,217

q→((p∨r)∨s)
(p∧r)→(q∨s)
(p∧¬r)→(q∨s)
((p∧¬r)∧¬s)→q
(q∧¬r)→p
s→((p∨¬q)∨¬r)
((s∧¬q)∧¬r)→p
((p∧¬q)∧¬r)→s
(q∧s)→r
r→(q∨¬s)
q→s
¬s→r

¬s∧q

7

0,1,2
0,1,2
0,1,2
0,1,2
0,1,2
0,1,2
0,1,2

q∧¬r
(p∧¬s)∨(s∧¬p)
q∧¬p
¬p∧¬r
p∧¬s
s∧¬p
¬r∧¬s

1 0,1,2,0 ¬p∧¬r

6

0,1,2,1
0,1,2,1
0,1,2,1
0,1,2,1
0,1,2,1
0,1,2,1

q∧¬r
q∧¬p
¬p∧¬r
p∧¬s
s∧¬p
¬r∧¬s

1 0,1,2,0,1 ¬p∧¬r

Due to the fact that the reduction mechanisms together with the multi-criteria dominance have
usually yielded a small number of abducibles, it is easy to verify whether we have arrived at desirable
results – that is, whether the resulting abductive hypotheses are really non-trivial fillers of the deductive
gaps. Let us consider results of a few selected problems.

In the case of problem P16, no matter the set of criteria, the only non-dominated hypothesis out
of seven left after the reduction is r. It can be checked that this formula is consistent with the set of
premises. It is also easily seen that it is significant (i.e. it does not entail s ∧ q on its own), it does
not “overlap” with the abductive goal and it is as simple as possible in terms of syntactic complexity.
A closer look at the set of premises reveals that adding r to the 1st, 3rd, 4th and 5th premise yields s
(since assuming r and ¬s we arrive at a contradiction). From r and the last premise we have ¬p, and
finally, from r, s,¬p and the 7th premise we derive q.

A more complex example is problem P17. Here, depending on the chosen set of criteria we are
either left with formulas ¬q and ¬s, or with the sole formula ¬q out of the seven abducibles remaining
after the reduction process. One can see that it is the overlapping criterion which causes formula ¬s
to be dominated by formula ¬q (that is, hypothesis ¬s occurs to be a worse solution than ¬q since it
constitutes half of the problem to be solved). Note that here the inclusion of the additional criterion
resulted in diminishing the number of non-dominated hypotheses, which is not the case in general, as
we will see in the next example. As in the previous case, it may be easily observed that the abducible
¬q meets the criteria of consistency, significance, overlapping, and complexity. As for the derivative
properties of this hypothesis, we can see that from ¬q, the 5th and the 7th premises we arrive at p; this,
together with the 8th premise, gives us ¬s; and finally, from p,¬q and the 2nd premise we have r.

Some interesting issues connected with the dominance relation are demonstrated by problem P66;
one can see that taking into consideration just the three criteria of consistency, significance and com-
plexity results in only one non-dominated abducible, s, out of the 57 simplified abductive hypotheses.
Hypothesis s is not very satisfactory because it overlaps with the abductive goal. This situation is not
changed by the inclusion of the operational complexity criterion. However, when instead of the opera-
tional complexity criterion the overlapping criterion is included, two additional abducibles appear to be
non-dominated: (p∧¬q)∨ (q∧¬p) and p∧¬q. The inclusion of all five of the criteria leaves us with two
abducibles: s and p∧¬q. Intuitively, the most interesting abducible seems to be p∧¬q, which is not as
simple as s, but does not overlap with the abductive goal. Observe that the set of three “basic” criteria
of consistency, significance and complexity is not sensitive enough to capture this intuition. Similarly,
in the case of P18, if we include three criteria, then p ∧ q is the only non-dominated hypothesis, but
it partially overlaps with the abductive goal, and for this reason q ∧ ¬s is also included when we add
the criterion of overlapping. These examples illustrate how sensitive the dominance relation might be
to the set of criteria and that, in general, the set of the non-dominated abducibles does not change
monotonically with the increasing number of criteria used to evaluate the hypotheses.
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This situation seems similar in problem P58, where the only non-dominated hypothesis obtained
under the three criteria is definitely of little value. Note that the first argument of disjunction is
equivalent to the abductive goal and the second is inconsistent with the set of premises. Thus the
hypothesis is significant (does not entail the abductive goal) only because a formula inconsistent with
the database is added as the second argument of disjunction, and it is consistent with the set of premises
only because a non-significant formula is added as the first. A more sophisticated set of criteria is needed
to obtain other hypotheses.

Example P55 illustrates the case where the abductive goal is inconsistent with the set of premises.10

In fact, it is inconsistent with the last two premises. The inconsistency is less obvious in the case of
P21. As one can see, in both cases the non-dominated hypotheses are always inconsistent with the set
of premises, which must be the case with CPC as basic logic. But still, even among the hypotheses
which do not conform the consistency criterion, the dominance relation allows to identify hypotheses
which are interesting from the viewpoint of the remaining criteria. Thus the examples illustrate the
fact that multi-criteria dominance relation may be profitably used with paraconsistent logics in the
background. It should be noted that such a change of basic logic would require adjustment both in
STM implementation (cf. [38]) and in hypotheses generation procedure.

In almost all of the problems considered here, the set of criteria denoted as (C4b) brings as non-
dominated the hypotheses which were also provided by other sets of criteria. Problem P58 with hy-
pothesis s ∧ ¬r is an exception here. This lack of novelties for (C4b) is due to the fact that the two
criteria of complexity are mostly concordant. The criterion of Operational Complexity added to the
three “basic” criteria could probably yield more varied results for more complex formulas.

4.3 Discordance of criteria

It is possible to estimate how often each pair of criteria disagrees, i.e., indicates opposite preference
for a pair of hypotheses (one criterion indicates that hypothesis H1 is better than H2, while the other
criterion indicates that H2 is better than H1). To estimate discordance of each pair of criteria for a
given problem, all n(n− 1)/2 pairs of n hypotheses are compared and opposite preferences are counted.
Note that the situation where one criterion does not distinguish between two hypotheses and the other
criterion prefers one hypotheses over the other is not considered a conflict.

Results shown in Fig. 4 demonstrate that discordance is usually low (especially among Significance,
Overlapping, and the two Complexities) which explains why there are so few non-dominated hypothe-
ses. In most cases Consistency is the most conflicting criterion – which means that it is hard to find
a consistent hypothesis that is at the same time relatively good at other criteria. The high discor-
dance between Consistency and Overlapping or Complexities (an example is problem P80) is caused
by relatively frequent occurrences of hypotheses inconsistent with databases – which is probably a cue
that the reduction process can be still improved by restricting hypotheses to be consistent with their
databases (on the other hand, this situation may be somehow exploited with non-classical logics, as we
have already observed). When the abductive goal is inconsistent with the database, Consistency is in
total agreement with the other criteria; examples of such problems are P81 and P82. Therefore, all of
the abductive hypotheses for these problems have to be inconsistent with the sets of premises. This
situation entails maximal agreement between Consistency and the other criteria.

The discordance between Significance and Complexities is rather low partially due to the fact that
after the reduction processes there are few non-significant hypotheses left (recall that the reduction
steps, especially (9), result in cutting off the logically stronger formulas and leaving these logically
weaker – thus with great probability, a non-significant hypothesis is simply the abductive goal or a
formula equivalent to it; see problems P7 and P37 as examples). What is more, one can see that the
only criterion which is in no great conflict with Consistency is Significance – apart from the fact that
the number of non-significant hypotheses is low, this is probably in part due to the fact that both of

10Just to state the obvious, were the set of premises inconsistent, there would be no abductive problem, because with
CPC in the background from the inconsistent set of premises it is possible to derive any formula.

16



Figure 4: Discordance of criteria (vertical axis in %) for problems with the highest number of unique
hypotheses.
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these criteria are binary; Overlapping and the two Complexities are multi-valued, which provides more
occasions for conflict, thus increasing discordance.

The discordance between Significance and Overlapping is almost non-existent because of the close
relation between these two criteria. An abductive hypothesis cannot be logically false and an abductive
goal cannot be a tautology, thus a non-overlapping hypothesis (that is, sharing no variables with the
abductive goal) cannot entail the abductive goal, hence it is significant. On the other hand, for similar
reasons, a non-significant hypothesis must contain the variables of the abductive goal. Overlapping,
Complexity and Operational Complexity are all minimized and related to the number of literals occurring
in the hypotheses, hence the low level of disagreement between these criteria.

5 Conclusions

The research presented in this article concerned automation of an abductive procedure. As a testbed, a
basic logical system – the Classical Propositional Calculus (CPC) – has been chosen to specify the main
components of the abductive problems and the abductive procedure. The choice of this simple logic
allows one to avoid ambiguities pertinent to more complex logical systems and to focus on the problem
of abductive reasoning. On the other hand, employing the proposed approach with the CPC opens a
way to use it in more sophisticated systems such as first-order logic, since the considerations reported
in this work are of a more general character.

In order to define the procedure of generating abducibles we employed a proof method called the
Synthetic Tableau Method (STM). For each one of the analyzed problems, information present on
suitable branches of synthetic tableaux (that is, the so-called entangled literals of synthetic failures)
was used to form abductive hypotheses. Because of a potentially extensive number of the candidate
abducibles, we developed a system enabling reduction, simplification and selection based on a multi-
criteria evaluation of the abductive hypotheses.

The results of our research demonstrate that filtering out logically equivalent and/or logically too
strong abducibles using various reduction and simplification techniques decreases sizes of sets of hy-
potheses by many orders of magnitude. Furthermore, the multi-criteria evaluation enabled reduction
of the number of abducibles to the ones that are more appealing than others according to the crite-
ria considered. As we have shown, the employment of the dominance relation provided a flexible and
an assumption-free method to select interesting abducibles, conforming to several criteria at the same
time, and depending on other available hypotheses in the set. The combination of reduction and simpli-
fication with the dominance-based evaluation proved to be highly efficient in finding simple abductive
hypotheses which solve problems in agreement with human intuitions and deductive experience.

The multi-criteria dominance relation approach allowed measuring interactions between evaluation
criteria of abductive hypotheses. As it has been demonstrated, interactions between criteria may reveal
the underlying structure of a problem. The combination of refined analyses of such an interplay in more
sophisticated logical systems, with massive problem sampling and the use of advanced data mining
tools, is a promising direction of research. This approach may not only contribute to understanding
of a complex structure of abductive problems, but may also be utilized in automated generation of
problem-solving heuristics. This interesting issue will be further investigated.

The aim of our research was to develop an automated system dedicated to solve abductive problems
in an exemplary logical system. Following encouraging results of this work, we would like to move
on to more advanced logics – such as the classical first-order logic or a modal logic. Due to the fact
that a combination of logically modeled abduction and artificial intelligence techniques has already been
shown to be possible [2, 30], more advanced decision support techniques such as data mining, knowledge
discovery and optimization algorithms may be introduced in the system. The process of abduction is
probably one of the most complex types of reasoning to be grasped by means of automated logical
tools. At the same time, it is challenging to model and effectively simulate this process by logical
tools combined with contemporary artificial intelligence methods (cf. [33]). The potential profits of such
research are high, as the essence of an abductive process is to make a creative use of available knowledge.
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