FRAMSTICKS MANUAL

This is a pdf form of the Framsticks documentation. It is compiled from the Framsticks HTML web pages
which look better (and are more recent) than this document. It is strongly recommended to browse on-line
documentation when possible. This reference manual, albeit outdated (created in 2008), lists selected issue
includes a Table of Contents, and may be more suitable for printing or serve as an off-line reference.

www.framsticks.com

by _Maciej Komosinski and _Szymon Ulatowski

Framsticks is a three-dimensional life simulation project. Both mechanical L
structures (bodies) and control systems (brains) of creatures are modeled. ="« 'rhj
is possible to design various kinds of experiments, including simple optimizatioRge-— 3

(by evolutionary algorithms), coevolution, open-ended and spontaneous
evolution, distinct gene pools and populations, diverse genotype/phenotype
mappings, and species/ecosystems modeling.

You are welcome to try Framsticks! Users of this software work on evolutionary computation, artificial
intelligence, neural networks, biology, robotics and simulation, cognitive science, neuroscience, medicine,
philosophy, virtual reality, graphics, and art. The system can be interesting for experimenters who would like
to evolve their own artificial creatures and see them in a three-dimensional, virtual world. You can also
manually design and test creatures. This software is a versatile tool for research and education.

http://www.framsticks.com/
http://www.cs.put.poznan.pl/mkomosinski/
http://www.toyspring.com/

Table of Contents

AN)oY I I =0T 0 o [0 o o o TP 1

2 About the project — ODJECHIVESANT SCOPE. .. . uuuuuuuuuuuiiuuiiueiietiettiaeeeeteeeeeeeeeeeeeeeeeeeeeseeeeeeseseeseessseeseeeseeeeeeseeeeeees 2
2.1 Objectivesandscopeof thiSreSearCh.............covvviiii 2

A A Y11 (=] 11072 10 Y= 1011 PP 2
RG] B T (Yot 110] oY 0) .0 < 3

S ASSUMPLIONSOT the MOAELo e e e eneenneeneeeneennnennee 4

Y a1 oA Ao T B 1Y = V1 PR PRPTUPRPPE

4.1 Physical(creature'®0dy) SIMUIALION.uuuuuiiiriiiiiiiiiiiietiieriereeerreesrreereeerree——er——————————————————————r—... 5
4.2 Neural(creature'®rain) SIMUIALIONoiiiiiie e e e e e e e e e e e e e e eaa e e e eeaans 5
4.2.1Formulasfor neuronsN, Nu, D, Thr,*, RNd.SiN,FUZZY.........coviiiiiiiieeiiieciiee e eeeeiiiann, 5

4.2.2TheN NeUroniN AELALL...........ovviiiiiiieie ettt e e e e e e e et eeeeeeeeeeesbbaaeeeeeeeeeeennes 6
4.3 SpecialneuroNSMUSCIESANAIECEPIOLS uutuuuuuereueeeeeeteteeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeseessennesesssnsseeeeeneeees 9

4.3.1Formulasfor basiceffectorsandreCEPLOLS.uuuuuurirririiiiiiiiriiriirereerrrerrrerreerreerrerer e 10
4. 4AAI NEUIONEYPES SUMMIALY. ...eeeeeveeeeeereeereeeeeereereteettettetttttttttttttaettttttttetattttttteeeaeeeeeeeaaeaaaeeaeaeeeeeeeeees 12

4.4, 1EXPErMENTANEUIONS.ccvitiiiiie e e e ee ettt s s e e e e e e e et e e e e e e e e e e eetea e e e e e eeeeeattsna e eeeeeeeesennennnns 15

Lo =] 100 o1 =Y o 0o |10 = 1

[SX T aTo)nY o 1SY A a1t F= 1Al {0) TR 1¢

L0 I {0 S 1Y 117 PN {
(ST (OIS T=T 0 0= L1 ([T 1¢
LT - U] o] = o 16
B.2.2J0INEODJECE. ... —————————— 19
(S IZAC] N LT U T (0] T o] 1Y o 19
6.2.4Neuroninput definition (CONNECHION)..........cooeeiiiii e 20
6.3 Model Validity CONSIIAINTS.uuveieeeirieiieiieieieeeeeeeeee et e e et e e e e e e e et ettt et ettt et tatetateaaetaattaaeaaaaaaaaaaaaaaaaaeaees 20
LS {0 == T 1] o] [2

A0 TR T] o] = 22
A O (=Y 110 (= o) = 11 N 24

72 EXAMPIES ..o ——————————————————————————— 24

7.2.2Examplesof theold, deprecate@YNLaX.........covvvviiiiiiiii e e e e e e e 24

ol 1= aT01nY o 1=T (0] 00 F= 1 Al 2 2
T @ LYY Y= ORI 2!
T2 B < = 11 < TR 2
RG] €T =T 1] (00 1= =1 0] 1 TSP 29
o =] 0] =P 2!

ST 101 o] A o = LA AT (<) £ T TR 3]

Lo IR0t 0T 11T 0] PP 3:
D 2 I . ettt e 3

LSRG =T (0 (=Y 00 10T PP 3¢
L I YL L0 [T 3

L RS T L= 1ot TR 3
Lo IS = o] 110 PP 3!

Table of Contents

9 Simulation Parameters
9.7Neurons

10"Standard" experimentdefinition: parametersreferenCe.......ccccvvvvvviviiiiiiiiii 37

10.1Tasksperformedn eachsSimulatioNStEN..........oeeiieeeiee e eennes 37
O =711 1) () 5 3¢

2.4Ex9erlmentdef|n|t|on. NEUFOANAIYSIS. .. .vvvveeiiiiiiiiiiiiieeieesteeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeereeeees 47
12 .5Experimentdefinition: Learnwherefood is. exploreandexploif............ccccevvvvvviiinieeeercceeiiiennnnn. 48
12.6 Experimentdefinition: BOIAS.cuviiiiiiiiiiii et 49
12.7Experimentdefinition: Generationaévolutionaryoptimizationexperiment.............ccccccevveeee... 50
12 .8Experimentdefinition: MAZES.............ooo oo —— 51

12.9Experimentdefinition: TEXEWEIITEE..........uu. i iriieiiieieieiiieiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesseeseeeseeeeeeeeeeeeees 53
12. 10EXPerimentdefinitioN: DANCEuuuuuierriiierrirrrireerrerressserererseesseeeeeeeeeeereereeeererrrrrrrrrrrerrrrrrrerrereee 54
12.11Experimentdefinition: FramsbOtS GamME.......cccoeeiieiii e nneeneennees 56
12.12Experimentdefinition: Batchevaluationof loadedgenotypes

13 Graphical UserInterface (GUI) fOr WINAOWS.........coviiiiieiieeeeeee e 60
G0 I [0T [0 o3 (o) SOOI 6(
S =Y aT0) 1A 0= o F= 1 7= 1LY o o 60
RCTRC] =Yoo AVAF=aTo | o] 7= 1 N1 1T o 1 61
Ry N a1 Te =Y IR0 o (o YT o [0 61
I Y/ [0] (=N 211 0] RPN 6!
13.6A GUI MINI-TULOTIAL.iiveiriiiiiiiee et e e e e e e e e et e et et e e e e e e e e eeesa b e e eeeeseesssbbaanaseeeeeeeeens 62

13.7Command-lingparameter$or the FramstickIGUL...........ooooeiiiiiiii e 62
13.8 Advancednotes 62

e = oo 0Tz L= 11 AT (=) £ 62
<Y T=] = TR 6

LA .2VISUBISTYIE ... ettt ettt ettt et et e e et e e et eeeeeeeaeeaeaae et aa et aaaeaaaaaaaaaaaaaaaaaaaaaaaaans 6
14.3Performanceharts

o0 110 [64

15 0OPENGL VISUAIISALION.eii e e i i e et e e e e s e e e e oo e e e oo e e et ettt et ettt e s st s e s s s s e s s e e e e ne e e e 6F
15.1S0MEOPENGLSIVIES. ... 65

16 User Interface — COMMEANAIINEovuuieieiie ettt e e et e e et e e e e et e e e e eabe e e e eataeeeeesaneeeeenes 69
16.11InteractivecomMMANd-lNE.oovviiiiiie ettt eeb e e e e eeeeeeeeae 69
16.2Command-line
I STRC T =71 (o o TP 6

16.4User-definedactions scriptsandmacros.

Table of Contents

RS = 1 ST T o 1 = VT 1= T = PP 7:
S] 7= =] T 11N 7

MRS F= T A= o] [P TPTTPTPT 7:

TG T o] (=T TS0 1= 7:
L. A UNCIIONS. ..ottt ettt ettt ettt 7"

18.5Using Framsticksclassesmethodsandvariables..............eeeiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee e 75

A0 A €1 (0] o= 1 KoT0] 111 < T 7€
20.3EXperimentdefinitiOn...........ooooiiiii i ———————— 81
20.4ANEUIONAETINILIONS. .. .vvui et ee ettt et e et e e e e e e e et e e e e e et e e e e aaa e e s e abeeseebaneeeeeranns 81
20. 5FINESSIOMMIUIAvei ettt e e e et e e e e e e e e et e e e e et eeaet e aaaes 82

20.6Visual Styledefinition............cooieiiii e 82
O Lo) 0 a1 0 aF=aTe IS a1 =Y i 7= 10 N 84

21 Software PACKAGEIEMAIKScei i e 85
21 . 1FIlES ANALIIE TYPES. . utviiiiiiiieiiieieeee ettt ettt et e e et et et e e et e aaaaaaaaaaas 85

21.2Samplefiles ProVIded.........ccoooii i 85
RG] L (ST EoT = aT0 (TR 8¢

A G T ST 011172 o) TP 86

21.3.2MS WindowsgraphicaluSerinterface..............uuuuuuuuuumriiiiiiiiiiiiieiieeiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 86
21.3.3Amiga graphicaluserinterface(Old)...........uuuuruurruiriririiiiirreiirerreereeerereeeeererr e 86
A =T o Yo T 1o o] [1 USRI 86

23 Framsticks resources(inCluding SUINVEY FESUILS)........uuuuuurireiieeeeirieeereereseeseeeeeeeeeeeseerererrreeseereeseerereeeserseees 90

T B Lo Yo B[aT<Y a1 7=\ 1Ta) o IR 9C

23.2Exercisesandexperiments- for teacherfndstudents............covviiiiii e 90
23.3Selectedbublications andtheir BIDTEX ENLHES........uuuuriruuiiriiiiiiiiiiiiiiiierireerreerrerrreereerree————————— 90

23.4RelatedWweb PageSANAPIOJECLS uueiieiieeiieiiieeeaeeteeeeeeeeeeeees 91
23 5 Mt SOMEF AN S CKIUSEIS. .. e eet e eet et ettt e et e et e et e et e et e et e e e et e e e e e erneeeranns 91

24 Framsticks Tutorial — StEP DY St .. i i i eiiiiiiiiiie i e e e e e e et s e e e e e e e e e e ee s e e e e e e e eeeaaran e e eeeaeeeennes 94

25 If YOU NAVE QUESTIONS. ...ttt s s s e e s s e e s e e e e e 10¢

1 Artificial Life introduction

The objective of this project is to study evolution process in a computer-simulated artificial world. We hope
that, like in the real world, despite randomness and aimlessness of basic evolution mechanisms, it will lead |
creation of more and more efficient artificial organisms, still better and better adapted to the artificial world
conditions.

For many years people used computers to simulate Nature. This kind of research also belongs to a field of
science called "Atrtificial Life" (AL). The name is obviously connected with "Atrtificial Intelligence” — both
fields of study partly overlap, but AL has more in common with biology and physics. It might be called a
branch of biology, because we study living (or "living", depending on the definition of this word) organisms
in an environment. No matter that the environment is an artificial, virtual world inside a computer:
philosophers haven't yet decided whether our world is real and, nevertheless, biologists keep examining its
living organisms. In addition, our made-up worlds let us (until we visit other, very distant planets) study signs
of life which has nothing to do with proteins.

Scientists studying AL concentrate on various fields and serve many purposes. Rules of simulated worlds di
not have to be like real ones, but such models seem more interesting (perhaps because you are able to dire
compare simulation results with reality).

Boids are an example of creatures following a few simple rules, which nevertheless make them group with
others (like fish shoals or bird herds). This kind of behavior was used in film making (computer control of
animals' models — "Lion King", "Batman forever" and many advertisements). More sophisticated models
include learning and self-improving creatures. Atrtificial organisms (i.e. carriages with engines) can be taught
to avoid obstacles, seek energy spots, follow targets, escape enemies etc. Such experiments are directly
connected with real robots' control — they might alone perform useful actions.

Often it is evolution which controls improvements — it awards better-adapted, fit (or, in the case of artificial
world, efficient as we want them) organisms. That has to do with genetic algorithms and works the same wa
In Nature, organism morphology is determined by genes, and this — together with other mechanisms, like
learning — supports evolution and its high efficiency. In our life simulator, similarly, genes describe the whole
structure of an organism. Full freedom in building genotypes means theoretically an ability for creation of

creatures of any complexity.
jF evelve with

Artificial Life research makes us ask whether self-improvement of artificial organisms can lead to founding
consciousness, intelligence, feelings? Not in our simple model, of course. However, there is still a question |
evolution alone created organisms which live among us. Experiments with simulated evolutions will show
their capabilities, and the results of such experimentation can help explain the mystery of our creation.

If you would like to share your ideas on these topics or read other comments, do not hesitate and use our
on-line forums.

http://www.framsticks.com/forum

2 About the project — objectives and scope

2.1 Objectives and scope of this research

The objective of these experiments is a study of evolution capabilities of creatures in simplified Earth-like
conditions. They are: a three-dimensional environment, genotype representation of organisms, physical
structure (body) and neural network (brain) both described in genotype, stiumuli loop (environment —
receptors — brain — effectors — environment), genotype reconfiguration operations (mutation, crossing over,
repair), energetic requirements and balance, and specialization.

The simulator allows the study of bath directed (with fithess criterion defined) and spontaneous (with no suc
criterion) evolution. In the directed case, it is possible to "grow" creatures with the given properties, like
simple construction and smooth movement, strength and robustness, ability to move in land and water
environments, seeking food, following targets, escaping and many others. The system allows _users to creat
more experiment definitions, which may lead to unexpected results and emergence of very complex
behaviors.

Another aspect of this research is the influence_of representation (description) of creatures, reconfiguration
operators and the rules of organism building on evolution results and characteristics of structures of created
individuals.

The most important part of the research is the study and evaluation of capabilities of various evolutionary
processes, including those concerning undirected evolution (which has not already been done in such a
complex environmental and simulation conditions).

2.2 System capabilities

Framsticks has a powerful, universal simulator with great capabilities, which are:

» Three-dimensional, mechanical simulation of the artificial world (Mechastick module):
¢ Creatures' simulation with finite elements method
¢ Specialization of their limbs — friction, strength, ways of acquiring energy by assimilation,
ingestion etc.
¢ Flat land, terrain made of blocks/slopes of different height and water environment
¢ Nondestructive and destructive collisions
¢ Ability for the user to interact with the simulated world (dragging of creatures, energy balls
placement, revival and killing of individuals)
 Simulation of creatures' control system ("brain™):
¢ Neural net of any topology, built from any kind of neurons
¢ Interaction with the environment: receptors (touch, equilibrium and energy localization
senses) and effectors (muscles moving a creature, controlled by its neural network)
¢ Various types of neurons
« Evolution:
¢ Maintaining a set of genotypes grouped in gene pools
¢ Maintaining a set of individuals grouped in populations
¢+ Many ways of organism description (genetic representations)
¢ Modification of creatures' descriptions by crossover and mutations
¢ Evaluation of creatures with various criteria (life span, speed etc.)

2 About the project — objectives and scope 3

¢ Maintaining of creatures' energetic balance (gains and usage of energy for various purposes)
¢ Performance measurement, multi-criteria evaluation
* Scripting language which allows for modification and extension of the system, designing custom use
experiment definitions, custom neuron types, user-defined fitness functions, macros, visualization
styles, etc.
» Parametization of most of operations, environment, simulation and evolution rules, and system
behavior
« Graphical interface for Windows and Amiga platforms, textual interface for any system

2.3 Directions of work

« various genotype encodings (including developmental) to describe body and brain

 network version of the simulator, and specification of the communication protocol

« JAVA and Python network interfaces independent from the simulator; other interfaces from
Framsticks users

e more accurate physical simulation

« design of experiment definitions for open-ended, spontaneous evolution and biologically-plausible
ecosystem simulation

« additional senses (receptors)

 network-distributed evolution; Framsticks Experimentation Center

« developers should refer Evamsticks Development Center.

http://ec.framsticks.com/
http://www.frams.alife.pl/dev/main.html

3 Assumptions of the model

We tried to make the artificial world similar to the real one. When creating it, we wanted to support it with all
the features which allow the evolution process to be aimed at a direction, so that organisms can — without a
purpose — discover new ways of living according to their fithess defined by the user. On the other hand, we

tried to create reasonable conditions of living in the environment without any fitness criteria defined — that is
in a spontaneous evolution.

Biological evolution started from simple components. Much time had passed until the first creatures were ab
to reproduce. In our artificial world we skip this "chemical evolution" stage. We supply our creatures with
basic functions: notation of their features in their genotypes, multiplication of genotypes, and energy
management. We also set the rules of organism building. It would be difficult to simulate a world with quarks
atoms or even proteins as its basic elements. There would be too many of them regarding reasonable size c
the artificial world and computational requirements. That is why the basic element of our organisms is much
bigger — it is a rod (bar, stick, cylinder...). Such an element can be assigned various functions depending on
genetic description: it can be just a stick, or can transmit and process signals and therefore be a part of a
"brain”, or be a receptor, or can have "muscles" and cause moves, or can be specialized in supplying energ

A group of connected sticks makes up an independent organism. It becomes alive when put into the simulat

The physical simulation module computes interaction of an organism with the world ("Framsworld"),
analyzes forces influencing particular sticks and computes their new positions. The simulation takes place ir
three-dimensional space, and uses finite elements theory and rigid bodies dynamics.

The neural module computes excitations in neural nets, collects data from receptors and sends signals to
muscles. Organisms' neuron nets are different from those usually used in Al because of their free topology
and inertia of neurons.

The energetic module analyzes gains and losses of energy. From settings in an experiment definition an
organism can, for example, gain energy by assimilation or absorption of food, and use it for the work of
muscles and neurons. After using up all its energy an organism may "die".

The creation module creates new organisms, for example by mutating and crossing over genotypes of the b
creatures which have lived so far (ancestors).

The simulator is controlled by the script which defines the experiment. A sample experiment is
"standard.expdef".

4 Simulation Detalls

4.1 Physical (creature's body) simulation

Bodies of creatures are divided into small pieces (at sticks' ends) which are ideal material points. This
approach is called "finite element method": not every point of a material body is simulated — only a finite
number of points, representing small volumes in the body. The simulator calculates all the forces affecting a
given point: gravity, elastic reaction when joined with other points, ground reaction and friction when
touching the ground, etc.

In our model some assumptions are taken to simplify calculations. A primitive but fast numeric integration
method is used, so the results are not very exact when dealing with big forces.

4

The picture on the right
shows sample forces
calculated in the

damping [gravity

Framsticks physical elastic
simulator, Mechasticlgmu nd reaction
reaction of joints

The body is made from
parts (points) and joints
(sticks, rods).

friction

Another simulation engine that can be used within Framsticks is ODE.

4.2 Neural (creature's brain) simulation

Neural network is made from neurons and connections. The Framsticks simulator supports many types of
neurons (for example sigmoid neuron N, noise generator Rnd, differential neuron D, delay neuron Delay,
threshold neuron Thr), and users can easily create their own signal processing neurons using FramScript ar
editing scripts/*.neuro files.

4.2.1 Formulas for neurons: N, Nu, D, Thr, *, Rnd, Sin, Fuzzy

Note: For most neurons, multiple inputs do not have idividual meaning and are aggregated with respect to
their weights (weighted sum is computed).

Neuron type How simulated

http://ode.org/

4 Simulation Details 6

In each simulation step:
#define NEURO_MAX 10.0
input=getWeightedInputSum();
velocity=force*(input-state)+inertia*velocity;
state+=velocity;
if (state>NEURO_MAX) state=NEURO_MAX;
else if (state<-NEURO_MAX) state=-NEURO_MAX;
tmp=state * sigmo;
N and Nu
(sigmoid if (tmp<-30.0) output = -1 //safer th (-tmp)
if (tmp<-30.0) output = -1; safer than exp(-tmp
neurons) N else output = (2.0/(1.0+exp(-tmp))-1.0); // -1..1
NU if (tmp<-30.0) output = O; /Isafer than exp(-tmp)
else output = (1.0/(1.0+exp(-tmp))); // 0..1
* state, velocity — internal variables
* sigmo, force, inertia — neuron parameters (properties)
e input, tmp — temporary variables
D . . .
. . Calculate the difference between the current and the previous input values.
(differentiate)
Thr Outputs lo if the input signal is below the t threshold. Outputs hi otherwise.
threshold .
() t, lo and hi are parameters.
*
(constant Outputs the value of 1.
output)
Rnd
(random Outputs random values (uniform distribution) in the range of —1..+1
noise)
The output sinusoid has frequency f and initial phase t. The output frequency depends
Sin on the neuron input value. Parameters:
(sinus
« fO (base frequency). The output frequency f = fO +
generator) .
current_neuron_input_value.
« t (time) — initial phase.
Fuzzy
(fuzzy control | See this paper for details; see this movie for demonstration.
system)

4.2.2 The N neuron in detalil

Sigmoid neurons (with short name N) use a simple weighted sum of input signals. Excitation influences
neuron state, which has some inertia. Stronger signals can change the state faster than weak signals. Outpt
flattened to a [-1,+1] range using basic sigmoidal function. See examples below: (input/state/output)

http://www.frams.alife.pl/common/Komosinski_FuzzyControl_CINC2003.pdf
http://www.frams.alife.pl/common/FuzzyControl.mpg

4 Simulation Details

2 4
Simple excitation. The state goes up when the

input is positive and falls down when theinput 15 +
reaches zero. Note that in this example the
neuron's state can fall below zero due toits 1 T

inertia.
05 +

Short but strong impulse gives similar results
to a weak and long one.

In this example a strong signal causes 51
saturation of the neuron (its state goes very#4
high). Later signal changes do not influence 3 {
the output. 5]

1
a

4.2.2.1 N parameters

The 'N' neuron has three properties (parameters) which influence its behavior:

« Force, noted as 'fo', value range: 0..1, default 0.04
« Inertia, noted as 'in’, value range: 0..1, default 0.8
» Sigmoid, noted as 'si', any real number accepted, default 2.0

Force and inertia influence changes of the inner neuron state. In each simulation step, the neuron state is
modified towards the value calculated from input excitations. Force determines how fast the value is change
Maximum value of 1.0 gives instant reaction. Low values, like the default (0.04) cause smooth 'charging' an
'discharging' of the neuron. Neuron's inertia is similar to the physical inertia of a body: it sustains its state
change tendency. Low inertia values have very little influence on the state. Values near the maximum (1.0)
can result in oscillations of the neuron state. The following pictures show sample usage of these parameters

(input/state/output).

4 Simulation Details 8

Force=0.1, inertia=0
Slow state change. Note the instant reaction after the mpu;
signal pulse when inertia is disabled.

2
With inertia enabled, the neuron's state rises above the mpug

pulse amplitude, and then drops below zero. The final state is
achieved after several oscillations.

-1

Force=1, inertia=0
Maximum force coefficient results in an instant input to output
propagation.

B o N W

Force=0.1, inertia=0.8 3%
%

The third, sigmoid coefficient changes the output function. Detailed formulas which describe the work of the
N neuron are as follows:

velocity = velocity , - inertia + force - (inpyt- state ,)
state = state , + velocity
2

output = -1
1+ e(—velocity - sigmoid)

where

input: weighted sum of neuron inputs,

velocity: analogous to physical velocity,

state: internal state (analogous to physical location),
output: output signal.

Subscripts represent the time moment.

The following pictures show sample usage of the sigmoid parameter.

T-output

Slgm0|d=20 state
e
Default. -3 -2z 1 1 1 2 3

AT pPUrT

Sigmoid=10.0 I ctate
High values nearly produce a threshold function. - -2 -1 t 1 2 3

4 Simulation Details

Sigmoid=0.5
Low values give a nearly linear output function. -3 -z -1

4.3 Special neurons: muscles and receptors

Basic muscles (actuators) and receptors (sensors) are illustrated below.

A muscle neuron ('|' or ‘@' in genotype) can change the relative
orientation of the controlled stick (relative to the previous
stick).
This simple 2-stick creature with a bending muscle in the
middle is described by the genotype "XX]|...]". The joint stays

output
T state
A
1 1 2 2

1

straight when the signal is equal to 0. Positive and negativé

S

values bend the constructon in the opposite directions!

+1

A

/

[animation]

The "G" receptor (gyroscope, equilibrium sense) gives
information about the stick's orientation relative to the
gravity force. A gyroscope mounted on a horizontally
aligned stick sends 0 to its outputs. Vertical position is
perceived as -1 or +1 depending on which end is higher.

animation

The "T" receptor (touch) can be imagined as a whisker
attached to the stick. Its relaxed state is -1 (nothing
detected in the whiskers' range). The signal value grows
as the stick gets closer to any material object. Reaches 0
when the stick touches the ground. Higher values mean
that the stick is pushed into the ground. [animation]

The "S" receptor (smell) excitation depends on the sum of
the neighbor energy sources (energy balls and other
creatures). Output range is from 0 (nothing detected) to 1
(maximum). Rich or closer energy sources smell 'stronger’
than small or distant ones. [animation]

4 Simulation Details

10

4.3.1 Formulas for basic effectors and receptors

Neuron type

How simulated

Changes the relative orientation of the joint's parts by rotating the second part aroup
first part's Z axis. Parameters:

* p (power) — muscle strength. Affects the movement velocity and the maximum

force the muscle can exert.

* r (range) — Affects movement range, maximal value 1.0 means full range
(-180°..+180°). The following rule applies:
Angle = Range * Signal * 180°

Sample creature (f1 genotype XX]|])

110

p:
p:1, m=2
p:2
j:0, 1, dx=1
i1, 2, dx=1
n:j=1, d=|
| (muscle)
[animation]
Neutral position Muscle active
Singal =0 Signal = 0.2
Angle = 0° Angle = 36°
Explanation: The joint is attached to parts #1 and #2. Part #2 was rotated around th
axis of Part #1, so its position and orientation was changed.
The above pictures were created using the "standard-xyz" OpenGL visualization sty
which can be used to investigate part orientations in creatures.
@ (muscle) | Changes the relative orientation of the joint's parts by rotating the second part arou

first part's X axis. Parameters:

* p (power) — muscle strength. Affects the movement velocity and the maximu
force the muscle can exert.

This musle always uses the full movement range (-180°..+180°).

d the

eZ

€,

nd the

m

4 Simulation Details 11

Angle = Signal * 180°

Sample creature (f1 genotype XX[@])

x A
+

- =
Neutral position Muscle active
Singal =0 Signal = 0.25
Angle = 0° Angle = 45°

Explanation: The joint is attached to parts #1 and #2. Part #2 was rotated around the X
axis of Part #1. Part #2 was not moved, because it lies on the X axis (in creatures Quilt
from f1 genotypes, all parts lie on the X axis).

The above pictures were created using the "standard-xyz" OpenGL visualization sty
which can be used to investigate part orientations in creatures.

€,

G

(gyroscope) state = (partl.z — part2.z) / stick_length

[animation]

T « if touches: state = distance of part and ground (which is equivalent to positiye
(touch) depth)

« if does not touch: check along x orientation of the part

L ¢ state = —1.0 if there are no objects closer than 1.0 distance
animation . . ;

lentnedon ¢ state = ... (intermediate negative values)

¢ state = 0.0 if a touched object is just at the T part

S
(smell) state = (sum_all_energy_sources[energy / distdpd®0
(if distance<1, then use 1)

animation

4 Simulation Details

12

Water
(water
detector /

pressure
indicator)

[animation]

water » above surface: state = 0.0
below surface: state = depth

Energy

(energy
level)

animation

state = 1.0 for initial energy level (a newborn organism)
« state = ... (intermediate values)
state = 0.0 for no energy (creature dies)

4.4 All neuron types: summary

N (Neuron)

Standard neuron

supports any number of inputs
provides output value
does not require location in body

Properties:
Inertia (in) float 0..1
Force (fo) float 0..999
Sigmoid (si) float -99999..99999
State (s) float -1..1

G (Gyroscope)

Equilibrium sensor.
O=the stick is horizontal
+1/-1=the stick is vertical

does not use inputs
provides output value
should be located on a Joint

T (Touch)

Touch sensor.

-1=no contact

O=just touching
>0=pressing, value depends
the force applied

does not use inputs
provides output value
should be located on a Part

S (Smell)

Smell sensor. Aggregated
"smell of energy" experience
from all energy objects
(creatures and food pieces).
Close objects have bigger

for each energy source, its
partial feeling is proportional
to its energy/(distance”2)

)

influence than the distant ongs:

does not use inputs
provides output value
should be located on a Part

* (Constant)

does not use inputs

4 Simulation Details

Constant value

provides output value
does not require location in body

| (Bend muscle)

uses single input
does not provide output value
should be located on a Joint

Properties:
power (p) float 0.01..1
rot.range (r) float 0..1

@ (Rotation muscle)

uses single input
does not provide output value
should be located on a Joint

Properties:
power (p) float 0.01..1

D (Differentiate)

Calculate the difference
between the current and
previous input value. Multiple
inputs are aggregated with
respect to their weights

supports any number of inputs
provides output value
does not require location in body

Water (Water detector)

Output signal:
O=on or above water surface

0..1=in the transient area just
below water surface

does not use inputs
provides output value

1=under water (deeper than 1) should be located on a Part

Energy (Energy level)

The current energy level
divided by the initial energy
level.

Usually falls from initial 1.0
down to 0.0 and then the
creature dies. It can rise abo
1.0 if enough food is ingested

does not use inputs
provides output value
does not require location in body

e

Ch (Channelize)

Combines all input signals inf
a single multichannel output;
Note: ChSel and ChMux are
the only neurons which
support multiple channels.
Other neurons discard
everything except the first
channel.

o

supports any number of inputs
provides output value
does not require location in body

ChMux (Channel
multiplexer)

uses 2 inputs
provides output value

13

4 Simulation Details

Outputs the selected channe
from the second
(multichannel) input. The first]
input is used as the selector
value (-1=select first channel
.., 1=last channel)

does not require location in body

ChSel (Channel selector)

Outputs a single channel
(selected by the "ch"
parameter) from multichanne
input

uses single input
provides output value
does not require location in body

Properties:
channel (ch) integer

Rnd (Random noise)

Generates random noise
(subsequent random values i
the range of -1..+1)

does not use inputs
provides output value

n does not require location in body

Sin (Sinus generator)

Output frequency = fO+input

uses single input
provides output value
does not require location in body

Properties:
base frequency (f0) float -1..1
time (t) float 0..6.28319

Delay (Delay)

uses single input
provides output value
does not require location in body

Properties:
delay time (t) integer 1..1000

Nn (Noisy neuron)

Propagates weighted inputs
onto the output, but
occassionally generates a
random value

supports any number of inputs
provides output value
does not require location in body

Properties:
Error rate (e) float 0..0.1

Sf (Smell food)

Detects only food, not other
creatures
(in experiments with food in
group #1)

does not use inputs
provides output value
should be located on a Part

Thr (Threshold)

if (input>=t) then output=hi
else output=Ilo

uses single input
provides output value
does not require location in body

Properties:
threshold (t) float
low output value (lo) float
high output value (hi) float

14

4 Simulation Details

4.4.1 Experimental neurons

Do not use unless you know what you are doing. Some of these neurons can be unstable, many are used fc

special purposes.

15

Nu (Unipolar neuron
[EXPERIMENTAL!)

Works like standard
neuron (N) but the
output value is scaled
to 0...+1 instead of
-1...+1.

Having 0 as one of the
saturation states shou
help in "gate circuits",
where input signal is
passed through or
blocked depending on
the other singal.

supports any number of inputs
provides output value
does not require location in body

Properties:
Inertia (in) float 0..1

Id Force (fo) float 0..999

Sigmoid (si) float -99999..99999
State (s) float -1..1

Fuzzy (Fuzzy systen
[EXPERIMENTAL!)

Refer to publications
to learn about this
neuron

supports any number of inputs
provides output value
does not require location in body

Properties:
number of fuzzy sets (ns) integer
number of rules (nr) integer
fuzzy sets (fs) string
fuzzy rules (fr) string

VEye (Vector Eye
[EXPERIMENTAL!)

uses single input
provides output value
should be located on a Part

Properties:
target.x (tx) float
target.y (ty) float
target.z (tz) float
target shape (ts) string
perspective (p) float 0.1..10
scale (s) float 0.1..100
show hidden lines (h) integer 0..1
output lines count (each line needs four channels) (0) integer 0..99
debug (d) integer 0..1

VMotor
(Visual-Motor Cortex
[EXPERIMENTAL!])

Must be connected to
the VEye and properly
set up.

supports any number of inputs
provides output value
does not require location in body

Properties:
number of basic features (nolF) integer
number of degrees of freedom (noDim) integer
parameters (params) string

St (Sticky
[EXPERIMENTAL!)

uses single input
does not provide output value
should be located on a Part

4 Simulation Details

16

LMu (Length muscle
[EXPERIMENTAL!])

uses single input
does not provide output value
should be located on a Joint

Properties:
power (p) float 0.01..1

5 Genotype encodings

The Framsticks simulator supports various genotype formats. A "format" is a language you can use to
describe creatures. The properties of this language are extremely important from the viewpoint of evolution.
you are a Framsticks beginner, read about the f1 format first. For some people, the fO format is even easier.

A low-level format which allows for building any creatures (least

I restrictive)

fl An easy-to-use recursive language

” Describes the way of growi_ng an organism (developmental encoding).

- Learn about f1 before reading f4

f2 Describes how basic parts of an organism are joined

3 Encodes f2 in "biological" genes with codons etc.

5 A variant of f4

f6 Describes chemical/metabolic rules of growing

f7 Accepts any string of symbols, a "messy" genome

g A parametric Lindenmayer system (L-system) - rules of body and brain
development

fOFuzzy Used for the evolution of fuzzy control systems embedded in fO genotypes

(see this paper and this movie)

other encodings are easy to add

The "Comparison of Different Genotype Encodings..." scientific paper contains more formal and detailed
description of genetic formats, their properties, and mutation and crossover operators.

If you enter a genotype, you have to indicate its format. If it is, for example, f4, you should start the genotype
with /*4*/ prefix. For multiline genotypes (like f0), you can also use another style for such a prefix: //0. If
there is no format prefix, f1 is assumed.

Although some genotype formats may look complicated, they are easy to learn. Just open the "new genotyp
window and experiment with genotypes. You can enter anything valid and get an immediate preview! Select
genes to see which creature parts are created by these genes. Click on creature parts to see which genes
created them.

http://www.frams.alife.pl/common/Komosinski_FuzzyControl_CINC2003.pdf
http://www.frams.alife.pl/common/FuzzyControl.mpg
http://www.frams.alife.pl/common/Komosinski_Encodings_ALifeJ2001.pdf

6 Genotype (format f0)

"Format Zero" genotype is the construction plan for any Framsticks creature. More detailed information on
how to use it for development of one's own stick objects is available in Framsticks SDK (Software Develope|
Kit). See also the FRED program. Fundamental information is provided below.

6.1 fO Syntax

Each line in fO describes one object in the model. Lines starting with the '#' sign are considered to be
comments and are ignored. The syntax is:

CLASSID:PROPERTY1,PROPERTY2,...
CLASSID - alphanumeric identifier of the class. Currently, there are four object classes (see f0 Semantics)

PROPERTY1,PROPERTY2,... - a set of properties of the object. Each class defines the sequence of
properties and a reasonable default value for each one. The full definition of the property is NAME=VALUE.
You can skip NAME-= if the given property is next in the sequence. Object descriptions with omitted property
names are not recommended as they may be misinterpreted by future GDK versions with different property
sets. There is an exception for easier editing: skipping inside the "natural”" (= "unlikely to change") property
sequences like x,y,z is allowed, you can write "x=1,2,3" instead of "x=1,y=2,z=3". (Such exceptional
properties are marked by flag 1024 in the property definition, see Param::flags(int i)). You can also skip the
whole definition of a property and accept the default value. If you want to pass special characters (for ex. a
comma) or set the empty string value ("), VALUE can be placed between quotes (*).

Examples

Let's assume the following class definition: CLASSID=0b and four properties with default values: a=0, b=1,
c=2, d=3

Some valid fO descriptions:

all properties are set explicitly ob:a=9,b=8,c=7,d=6

you can omit property names if the sequence is obeyed 00:9,8,7,6

some properties have no names, but they are deduced from the seqyehcie6,a=9,8,7

"b" and "c" are not defined — default values will be used (b=1,c=2) |lob:9,,7

b="", c=2 ob:9,"™,.7
b="," (comma), c=2 0b:9,"",,7
default values used for "a","c" and "d" ob:b=8

default values used for all properties ob:

http://www.frams.alife.pl/dev/main.html

6 Genotype (format f0) 19

6.2 fO Semantics

Parts, Joint and Neurons have reference numbers used to attach other objects. References start with 0 and
every new object in the class gets the next reference number.

6.2.1 Part object
Creates instance of the Part object.

» CLASSID=p:

* x=0,y=0,z=0 - position in 3D

* rx=0,ry=0,rz=0 - 3D orientation (amount of rotation around each of 3 axes)
* m=1 - physical mass

* s=1 - size (for collisions)

e dn=1 - density

« fr=0.4 - friction

* ing=0.25 - ingestion

» as=0.25 - assimilation

* i="" - general purpose "info" field

The Part's position and orientation can be overriden by a joint definition using the "delta option". In this case
you can skip X, y and z in the part definition (see f0 Examples).

6.2.2 Joint object
Creates instance of the Joint object.

» CLASSID=j:

e p1=-1,p2=-1 - ref.numbers of the two connected parts. Note that the default -1 is illegal here, you
must not omit these properties. Both parts have to be created earlier.

* rx=0,rx=0,rz=0 - rotation: can be used to enforce specific orientation of the second part (p2) relative
to the first part (p1). Orientation can influence some of the effectors/receptors and can be used as
growing direction while creature is being constructed.

» dx=?,dy=0,dz=0 - delta option: if you specify any value for dx, all three deltas are used as
displacement applied to the second part (p2) relative to the first part (p1). Local coordinate system of
pl is first rotated (as defined by [rx,ry,rz]) and then translated by [dx,dy,dz]. This technique allows
you to define relative placement of parts. Without this delta option, absolute part positioning is used
(as defined by the coordinates [x,y,z] of the part).

* stif=1 - stiffness

« rotstif=1 - rotation stiffness

» stam=0.25 - stamina

s

* i="" - general purpose "info" field

6.2.3 Neuron object
Creates instance of the Neuro object.

A signal processing unit, sensor, or effector. Neuron reference number is used in fOdocneuroitem definition.

6 Genotype (format f0) 20

» CLASSID=n:

» p=-1 - ref.number of the part the neuron is attached to (the part has to be created earlier).
* j=-1 - ref.number of the joint the neuron is attached to (the joint has to be created earlier).
« d - neuron class description, like "classname:properties_and_values"

* i="" - general purpose "info" field

6.2.4 Neuron input definition (connection)
Add input to the neuron = weighted connection to the other neuron. Both objects must be already created.

» CLASSID=c:

* n - ref.number of the parent neuron

« i - ref.number of the neuron to be connected as the parent's input
« w=1.0 - connection weight (optional)

6.3 Model validity constraints

« at most one joint can directly link two parts

« each joint must be connected with two distinct parts

« all parts must be directly or indirectly connected with each other

« delta joints must not form cycles

« for each joint, the part-to-part distance must not exceed the value defined as the maximum Joint.dx
(2.0)

6.4 fO Examples

To see these in Framsticks application, you have to start writing fO genotype with "//0" (two slashes and zerc
and new line). The shortest fO genotype is a single Part:

p:
A single stick, "X" in f1

p:
p:1
j:0,1

Three sticks in line, "XXX" in f1, no "delta option" - absolute coordinates used in all parts

p:
p:1,m=2
p:2,m=2
p:3,
j:0,1
ji1,2
j:2,3

Three sticks line, "XXX" in f1, with "delta option" - relative positioning (dx=1)

6 Genotype (format f0) 21

p:m=2
p:m=2

p:
j:0,1,dx=1
j:1,2,dx=1
j:2,3,dx=1

Three sticks star (120 degrees), "X(X,X)" in f1, no delta option, absolute coordinates are awkward and the
sticks' length cannot be seen

p:
p:1, m=3

p:1.50017, -0.865927
p:1.50017, 0.865927
ji0,1

i1, 2

1,3

Three sticks star (120 degrees), "X(X,X)" in f1, using delta option, dx=1, note that 120 degrees / 2 = 1.047 r:

p:m=3

p:

p:

j:0, 1, dx=1

i1, 2, rz=-1.047, dx=1
j:1, 3,rz=1.047, dx=1

Neuron net example, "X[|G:1,1:2.3][@-1:3.4,0:4.5,T:5.6]" in f1

p:
p:

j:0, 1, dx=1

n:p=1

n:j=0, d="|:p=0.25,r=1"
n:j=0, d=G

n:p=1

n:j=0, d=@:p=0.25
n:p=1, d=T

c0, 2

c.0, 3,23

c1,0

c3,0,34

c:3,3,45

c:3,5,5.6

c4,3

Cyclic structure, parts are connected 0->1->2->3->0. Not possible in f1 or f4 formats.

p:0,0
p:1,0
p:1,1
p:0,1
j:0,1
1,2
j:2,3
j:3,0

7 Genotype (format f1)

7.1

Two

Creature body

basic symbols are:

» X — stick,
() — branch.

The body structure is built like a tree: new sticks are joined with ends of the previous ones.

o)((
oX(
oX(
.X(

X,X) means two sticks from one-stick root,
X,X,X) means three sticks from one-stick root,
X,X,) is also possible, as well as

XXX,

Inside parenthesis, the full angle is divided into as many parts as there are commas+2, and each stick in

Su

ch a‘junction’ has as much freedom.

Modifiers (special characters) can be placed before X's and ('s. They affect the following X and, usually
less and less, further following X's. Modifiers modify stick position and its features. Big and small letters
can be used; big letters increase the given property while small ones decrease it.

Modifiers: Rr, Qq, Cc, LI, Ww, Ff, Aa, Ss, Mm, li, Ee.

Sticks' joints propertie

[72)

R

rotation (by 45 degrees) — this modifier DOES NOT affect further stigks

Q

twist

C

curvedness

Physical propertie

[}

L

length

W |weight (in water environment light sticks swim on the surfag

F

friction (sticks will slide on the ground or stick to it)

Bi

ological properties (mutually exclusive)

e)

A

assimilation = photosynthesis (a vertical stick can assimilate twice as much as a horizontal one

S

collisions)

stamina (increases chance of survival during fights, see also simulator parameters — destructiv

1%

M

bigger stress, and use more energy)

muscle strength, a.k.a. muscle speed (strong muscles act with bigger force, gain higher speed,|can res

ingestion (ability to gain energy from food: energy balls or dead corpses)

Other

E

energy (experimental).Creature's starting energy can be higher or lower when 'E' or 'e' is used. You

should use it only when the "energetic efficiency mode" is enabled (see simulator parameters).

Otherwise, disable 'eE' modifiers in genetic parameters!

7.

1.1 Examples

7 Genotype (format f1)

XXX(XX,X)

X(X,RRX(X,X))

XICXICXICX

Some more samples of possible structures:

23

7 Genotype (format f1) 24

7.2 Creature brain

Neurons are placed in [], after X's. The following information can be supplied inside square brackets:
* neuron type
* properties (parameters) of the neuron
« inputs of the neuron (if it can have inputs)

The syntax is:

[NeuronTypePropertyAndInputList] where PropertyAndInputList is a comma-delimited list of pairs
PropertyName:Value and Neuronlnput:Weight. If NeuronType is omitted, 'N' (standard neuron) is assume

Neuron inputs can be taken from different signal sources: other neurons' outputs or receptors. A neuron
input can also have a constant value. If a neuron is a muscle, it can control its stick's bend or rotation.

The alternative (old, deprecated) syntax lets you describe two neurons (a muscle and 'N') in one:

[MuscleTypéPropertyAndInputList] where MuscleType is either ‘@' (stick’s rotation) or '|' (stick bgnd).
This old syntax creates a 'N' neuron, as described in [...], and a muscle of MuscleType with input from
that neuron. Thus the old syntax is equivalent to
[N, PropertyAndinputList] [MuscleType, -1:1]

In the old genotypes, you could find names of 'N' properties noted as symbols !=/. They are deprecated,
and equivalent to:

« 'I' [exclamaton mark] — force (present property name: 'fo’)
« '=' [equals] — inertia (present property name: 'in)
* '[' [slash] — sigmoid (present property name: 'si’)

(see also the_Simulation details section)

7.2.1 Examples

Enter these genotypes into Framsticks to see the corresponding neural networks.

* X[N]

* X[@]

* X[@]IN]

* X[@,1:1.0][N]

* X[1:1.0][-1:2.0]

* X[1:1.0][G:2.0]

* X[N,fo:1,si:-4]

* X[Sin,f0:0.1,t:0.5]

7.2.2 Examples of the old, deprecated syntax

. X[@-1:2,1:3] ...
means that a stick has one neuron 'in' it. It controls the stick's rotation (@), and the neuron has two inputs

7 Genotype (format f1) 25

one comes from -1 relative position in the genotype, the other from +1 rel. position. The first 'signal’ weigh
is 2, the other is 3.

X[|*:1,G:2]
is a stick with one neuron controlling its bend, having two inputs: one constantly equal to 1 and the other
connected to a gyroscope (placed on the stick) weighted 2.

One stick can have many neurons — X[.....][.....][---..]

: Example:
X[@-1:1.2,1:2.3] [G:1] x xj0:1] X[@-1:1.2,1:2.3][G:1]
X[10:1]
X

_ ’Eyrnscnpe
Rotating receptor
muscle

* neuron (1) affects stick's bend and is looped recursively
* neuron (2) affects stick's rotation, and receives signals from neurons (1) and (3)
* neuron (3) has one input: gyroscope (equilibrium sense of the last stick)

8 Genotype (format f4)

This encoding scheme is an indirect developmental encoding, devised by Adam Rotaru-Varga.
Contents:

Overview

The developmental process
The minimal example
Two-sticks example
Genetic codes

Operators

Examples
Links / References

8.1 Overview

The f4 encoding resembles the f1 encoding, with an important conceptual difference: f1 is composed of cod
which are interpreted as structural elements (sticks, neurons), or their attributes. On the other hand, f4 code
are interpreted as instructions to cells. An f4 genotype describes the developmental process of an organism
Development starts with a single ancestor cell, which starts to execute instructions from the start of the gene
code. As the cell divides, new cells are created, which execute different instructions in parallel
(differentiation). The development stops when all cells mature, and the final shape of the creature is the rest
of the whole development process.

Developmental encoding models biological growth of an individual. Some features of a developed creature
are not encoded by a particular gene, but by an interplay between developing parts. These interactions are
modeled during the development process.

The developmental process. A developing creature is composed of interconnected cells. A cell is either a
stick, or a neuron, or still undifferentiated -- this is the type of the cell. Undifferentiated cells can turn into a
stick or neuron (as a result of developmental instructions), but not the other way around.

Development starts with a single, undifferentiated ancestor cell, executing the start of the genotype.

During each step, each cell executes one (or more) instructions, in parallel. A new step is started whenever
division or a change in type occurs. Development stops when all cells stop changing. At this point, there
should be no undifferentiated cells.

The minimal example. The minimal f4 genotype looks like this: '/*4*/ X' (ex0). This says to the ancestor cell
to turn into a stick (X), and stop development. The end result is a single stick -- corresponding to f1 genotyp:
X'

Two-sticks example. /*4*/ <X>X (ex1). This looks more interesting: '&It"; denotes cell division. It will create
two cells, the first will execute the instruction immediately following the '<', while the other will execute the
instruction after the corresponding ">'. Now, it looks like '<' and '>' act like parantheses, but that's only
superficial. In fact, '>' means 'stop development'.

The exact process looks like this:.

step 0. Initially, there is the ancestor cell, no 1, undifferentaited.

step 1. cell 1 executes '<' (division), creates cell 2 undifferentaited.

step 2. cell 1 executes 'X', turns into a stick.

(cont) cell 2 executes 'X' (the other one), turns into a stick.

step 3. cell 1 executes >' -- stops development.

(cont) cell 2 stops development.

8 Genotype (format f4) 27

The end result is two connected sticks, the same structure created by f1 genotype "XX..

8.2 Details

An f4 genotype is identified by the prefix '/*4*/ . This is not part of the genotype, but a comment identifying
that it is of type f4.

Most f4 codes are one-letter codes, with some exceptions. An f4 genotype is expressed as a string of codes
However, because division branches the sequence of instruction in two, the genotype can be conceptualise
a binary tree of codes. The string representation corresponds to a pre-order traversal. (Note that an f1 can k
conceptualised as a tree as well.)

Codes are the following:

'<' Division. Creates a new cell. The new cell will be connected to the old one. This is the only way of
creating a new cell.

After division, the two cells will execute different codes. The '<'is followed by the codes executed by the firs
cell (ending in a *>"), and then the codes to be executed by the second cell. Thus the code to be executed b
second cell can be found after the corresponding >'. Note that both code sequences can contain further
divisions. The general form is:

<...cell 1 code... > ...cell 2 code... >

If there are n divisions in a genotype, they will create n+1 cells. This also means n+1 cell-stop markers '>'".
However, the very last '>' can be omitted. This is because the last stop is not followed by anything else, and
have an equal number of '<' and '>' codes.

Example: <LL<X>X>IIX (ex53)

In this case, after the first division, the first cell will continue with the 'L' (pos 2.), while the second, freshly
created cell with the 'I' (pos 9).

Usually undifferentiated cells divide, and later differentiate into sticks or neurons. However, a neuron can
divide, and in this case the new cell will be a neuron as well, with the same characteristics as the old cell.
Existing links are also duplicated. Sticks cannot divide.

'X' Turn into stick. Turns the cell into a stick. The cell must be undifferentiated. It will remain a stick, since
a stick cannot change its type (nor divide).

'N' Turn into neuron/muscle. Turns the cell into a neuron. The cell must be undifferentiated. It will remain a
neuron, since a neuron cannot change its type.

'>' Stop development of cell. Cell should not be undifferentiated. This symbol also has the role of a
delimiter.

" Increase branching angle (comma). Increase the branching count (angle) of future divisions. Changes
takes effect when the dividied daughter cell turns into a stick. Cell can be undifferentiated or a stick. Exampl

exs.

'L'/'l" Increasel/decrease length of stick. L: increases length by 0.3*(2.5-len). |: decreases length by
0.3*(len-0.3). Works with sticks and undifferentiated cells.

'R'/'r" Increase/decrease rotation by 45 degrees. Works with sticks and undifferentiated cells.
'C'I'c’ Increase/decrease curvedness.

'Q'I'g’ Increase/decrease twist.

8 Genotype (format f4) 28

Neural parameters can be modified by a sequence of increasing/decreasing codes. (Note that in f1 these ar
using concrete numerical values.) These codes are of the form ":X+:" or ":X-:' for increasing and decreasing
respectively ":!+:" Increase neural force, by (1.0 — force) * 0.2.

"1-:' Decrease neural force, by force * 0.2.

"=+:" Increase neural inertia, by (1.0 — inertia) * 0.2.

:=-:' Decrease neural inertia, by inertia * 0.2.
"./+:" Increase neural sigmoid value, multiply by 1.4.

"./-' Decrease neural sigmoid value, divide by 1.4.

"' (weight) .

Input link is an integer number, interpreted as the relative reference to the neuron where the link is originatir
1 means the 'next' neuron, -1 the previous, 0 this one, 3 three from here on, and so on. Note that relative
references are based on the current structure, and not the final one!

There are special input codes for senses: 'G' for gyroscope (adds a gyroscope sense to the stick the neuron
connected to), 'T' for touch sensor, and 'S' for smell sensor.

The weight is a real number representing the weight of the link. Examples: ex9, ex11.

‘' Turn into a bending muscle. Turns the cell into a bending muscle. The cell must be a neuron. Examples:
ex10, ex51.

‘@' Turn into a rotating muscle. Turns the cell into a rotating muscle. The cell must be a neuron. Examples:
ex11, ex52.

Codes that affect biological properties:

'‘A'f'a’ Increase/decrease assimilation.

'I''" Increase/decrease ingestion.

'S'I's' Increase/decrease stamina.

'M'/'m' Increase/decrease muscle strength.
'F'I'f' Increase/decrease stick strength.
'W'/'w' Increase/decrease stick mass.
'E'l'e' Increase/decrease stick energy.

'#' Repetition marker. This code allows certain other codes to be repeated more than once. The explanation
of this code requires certain general details, left out from the discussion so far for the sake of clarity. This
code is quite tricky, but it is also powerful: it can create repetitions of the same codes (and thus substructure
withouth the dupication of the codes themselves.

Each cell has a pointer to the currenty executing code. But they have another pointer, which is the 'to repeat
pointer. They also have an associated 'to repeat' counter. The '#' code creates a branching in the genotype |
much like the " as well: if the repeat counter is 0, it means regular 'stop’, as described above. However, if the
counter is not 0, it is decremented, and if it still not zero, the cell 'jumps' back to the repeat pointer. If the
repeat counter gets to 0, the second child of the '#' is executed to finish off.

What all this means is that a genotype of the form

#n ...repcode... > ...endcode...

means that the repcode part will be repeated n times, and the endcode once in the end.

There's one more detail: when a cell divides ('new cell inherits the repeat counters, and not the old one. Thu

8 Genotype (format f4) 29

only one cell will continue the repetition.
Examples; ex8a, ex15. ex16. ex17.

8.3 Genetic operators

Mutation produces some localised changes in an f4 genotype. Mutation operates on the tree representation
a genotype. A single mutation can change a code, change a parameter of a code, add a new code (division,
neural link, repetition marker, or simple code), or delete a code. A mutation operator can consist of several
single mutations. The amount of change of a mutation is estimated from the ratio of number of changed cod
and total number of codes.

Crossover operates on f4 genotype trees, and exchanges two subtrees of two genotypes. The size of the
subtrees varies, between 10 and 90 percent of the genotype.

8.4 Examples
ﬁ);ample f4 genotype corresp. f1 genotype (approx) description
ex0 X X a single stick
two sticks connecte
ext X=X XX one-after-the-other
two sticks connecte
ex2 <<X>X>X X(X,X) to the same third on
(branching)
a 3-way branching
ex3 <<, < X, >X>X>X X(,X,,, X, X,,) with different
brancing angles
ex4 IX>X><KXSX><X>X XXX (XX, X) more branching
ex5 |<<X><<X>X>X>X XOGX(X,X)) more complex
branching
ex6 |<X>leX>lceX>X>LLLX XIXIX(LLLX,X) ?;ngresm length
ex7 |<<X>RR<<X>X>X>X XOGRRX(X,X)) branching with
rotation R
ex8a |[#3<X>IC>X XICXICXICX repetition, C
ex8b <X>IC<X>IC<X>ICX! XICXICXICX curvedness C
a stick with two
neurons attached tg
ex9 <X><N[1:2]>N[-1:3] X[1:2][-1:3] it. The two neurons
are connected to
each other
a structure with two
ex10 <X><X><N]|[1:2]>N[-1:3.5] XX[[1:2][-1:3.5] neurons and a
bending muscle
a structure with a
ex11 ;>[(g:<3<o,]<>)><<,>>><<N@[1:20]> XX[@1:20][G:30](X,,X,) rotating muscle and
a gyroscope sense
ex12 <X>N|[*:1][G:2] X[|*:1,G:2]

e

8 Genotype (format f4) 30
a stick with a
bending muscle

ex13 |[<X>N<[*0]>[-1:10]<> X[*:0][-1:10][-2:10] duplicating links
upon neuron divisio

<X><<X>N[[0:1]><X>) _) _ various neurons an
ex14 <N@[-1:1.2][1:2.3]>N[G 1] XX[|0:1]X[@-1:1.2,1:2.3][G:1] links
X(HX(HX(HX(HX(H - e .
ex15 |[#10,<<X>X>>LLX XX (XX (X GLLX, :ﬁ;’::“”g division 1
X)X)X)X)X)X)X)X)X)X)
X(,X(,X(,X(,X(,X(,X(,
X(X(X(LLX,X(X, X)), even more
exl6 [#10,<<X><<X>X>X>>LLX X(X,X)),X(X,X)),X(X,X)), repetitions
XO4X)), X 04, X)), X (X, X)), P
X(X, X)), X(X, X)), X(X,X))
rEXX X GXGXGX GXGXGXGXGX,
IRRX(LLX,LLX)),
IIRRX(LLX,LLX)),
IIRRX(LLX,LLX)), a worm-like
IRRX(LLX,LLX)), creature, composed
XSHIL, <X> <<|IX> > >>
exlr TXEHIS, XZRR<IXZLRALXZ>X IRRX(LLX,LLX)), of repeated identica
IIRRX(LLX,LLX)), segments (‘kukac')
IIRRX(LLX,LLX)),
IRRX(LLX,LLX)),
IIRRX(LLX,LLX))
two sticks and a
ex51 <X><X>N| XX[|] 1+ 2?2 * bending muscle
between them.
two sticks and a
ex52 <X><X>N@ XX[@] [* ?? */ rotating muscle
between them.
ex53 |<LL<X>X>IIX LLX(ILX,X) 3sticksina’y
formation
Related links

« f1 genotype format

« All Framsticks genotype languages

9 Simulation Parameters

If you need help, read the hints (tooltips) which appear when you stop the mouse pointer over a name of a
parameter in the program. Documentation below is provided in addition to those hints and discusses only
some issues.

See also:

Tips for users
Interface

Interface parameters

This page:

Experiment
Files

Error reporting
World
Genetics

User scripts
Neurons

9.1 Experiment

Experiment definition: choose experiment definition which controls behavior of the Framsticks system. It is a
script file with the ".expdef* extension. All available experiment definitions are summarized here. Advanced
users can create their own experiment definitions and thus exploit the full potential of the system. Press
"Apply" each time you change the experiment definition.

Parameters of the standard experiment definition are available here (see also tips).
Two experiment definitions more:

« standard-log.expdef in scripts_sample subdirectory (provided as an example of logging all genetic
operations).

« standard-tricks.expdef in scripts_sample subdirectory (provided as an example of complex fithess
functions with customized performance measurements, and changing creature locations during their
simulation).

Initialize experiment: perform initialization actions for the selected experiment definition (for example, create
appropriate gene pools and populations, clear them, insert the initial genotype, reset counters, etc.). Itis
recommended to perform initialization before running an experiment.

Experiment: Gene pools: <gene pool nhame>

An experiment definition may group genotypes into "gene pools". Each of them has separate settings. Settir
affect all genotypes belonging to a given group (gene pool).

Fitness formula: advanced users can enter a custom fithess formula here. For the "standard" experiment
definition, the formula is automatically created when you change weights of fitness criteria, and it reflects

9 Simulation Parameters 32

those settings.

Scale fitness?: if turned on, fitness is modified linearly according to the scaling rules. Thus final fitness is
computed, which is equal to:

« 1.0 for creatures with average fitness

« 0.0 for creatures with fitness less or equal to the value of (average fithess — Shift coefficient *
standard deviation of fitness)

« Scaling coefficient for creatures with maximal fitness.

Experiment: Populations: <population name>

An experiment definition may group simulated objects into "populations”. Each of them has separate setting:
Settings affect all individuals/objects which are simulated and belong to a given group (population).

Energy calculation: calculate energy balance during simulation?
Death: remove objects when their energy reaches 0 (creatures die)?
Neural net simulation: after a creature is put into the world, activate its neural network

» Off — don't simulate neural networks at all

» Immediately

« After stabilization — start brain simulation when the creature completely stops (all initial vibrations
stop).

Performance sampling period: especially important for estimating distance and velocity. Low values cause
vibrations/little movements to be counted as velocity. High values let only smooth, straight moves to be
counted.

Performance calculation: after a creature is put into the world, calculate its performance

» Off — don't calculate at all

* Immediately

« After stabilization — count measurements when the creature completely stops (all initial vibrations
stop).

NOTES. If you want to evolve quick creatures, calculating their speed including the result of falling down
and turning over would be unfair. This is why "delay for stabilization" may be introduced. Otherwise,
creatures could gain additional ("unfair") fithess bonus because of their initial position (creatures fall onto the
ground and earn speed without using neurons).

Speed and movements are measured using center of gravity position.

Consider the following special (educational) situations. (1) When a creature waits for stabilization, other
living and active creatures may push it and move it, so that it cannot stabilize. (2) When you set immediate
simulation of neural network and after-stabilization performance calculation, a creature might start moving
immediately and would never stabilize. Thus performance and energy wouldn't be calculated, and such a
creature would live forever as long as it kept moving. (3) In water environment, stabilization may be difficult
to achieve.

9 Simulation Parameters 33

Muscle static work, Muscle dynamic work, Assimilation productivity: these settings influence energy balance
When non-zero values are used, creatures may spend more energy than Idle metabolism, and can gain ene
by assimilation.

9.2 Files

Save backup: if you set this value to a number N>0, the simulator writes an EXPT (experiment state) file
every N events. An "event" is triggered by an experiment definition. With the "standard" experiment
definition, an event occurs after a creature dies and its genotype's performance is updated. Names for
successive autosave files are generated automatically by adding numbers to the last filename you used whe
saving the EXPT file. For example, when you save an experiment state under the filename speedl.expt, an
set this parameter to 250, you will get the files speedl 001.expt, speedl 002.expt, and so on. Each file (loc
will be saved after evaluating 250 creatures.

Overwrite: if not set, the simulator will change filenames if needed so that it will not overwrite old files.

Show file comments: comments from loaded files will be displayed in the messages window.

9.3 Error reporting

Choose level of details for messages in the Messages window. Decide when genotypes/creatures are checl
against errors.

Fail on warnings: some genotypes cause problems when they construct creatures. They are valid syntactice
but warnings are generated while a creature is built from such a genotype. These warnings are called "build
problems", and an example of this situation is when a genotype provides many identical muscles in the sam
place in the body. This is not allowed, and thus some muscles are disabled (which causes warnings).

If you enable "Fail on warnings", such genotypes will not be simulated, only those that are entirely correct.
Otherwise, genotypes with build problems (after they are fixed) will also be simulated.

9.4 World

Type: For 'Blocks' and 'Height field' you have to provide a "map" of heights. 'Height field' world has smooth
slopes.

Size: Side length of the (square) world.
Map: description of world heights, it can be:

« randomly generated world: r (sizel) (size2) (seed)
sizel,size2 are number of blocks in west-east and north-south direction. seed can be omitted, for
different numbers you get different worlds.
 custom layout: m (sizel) (size2)
followed by world map (sizel*size2 digits)
5 means 'level zero' block height, 6-9 is a 'hill', 1-4 is a 'hole'
example (a cross-shaped hill):

m33
575
77
575

9 Simulation Parameters 34

additional characters "-" and "|" are slope surfaces between blocks ("-" is WE direction, "|" is NS
direction). They are valid only between digits and only for '‘Blocks' world type.
more sophisticated example:

mb55
22-66
222-6
2|333
-6-33
41498
 custom layout: M (sizel) (size2)
works just like 'm', but you can use floating point numbers instead of digits (so you can use 5.35, not
just 5). Note that with 'M', the value of 0 means 'level zero' height, which is different from 'm'

convention.
Water level: the main surface is at 0.0 height and you set the water level here.
Boundaries: what happens when a creature crosses the boundary of the world?
* None — the world is unlimited,

* Fence — creatures cannot go outside,
« Teleport — creatures are moved to the opposite side when trying to cross the border.

9.5 Genetics

Remember history...: the history of genetic operations (which genotype is mutated from which, which
genotype was crossed over with which, etc.) is remembered so that you can draw a tree of evolution. Such
history can consume large amounts of memory when it contains many (for example, tens of thousands)
genotypes.

Genetics: Neurons to add

Checked neurons are those which may be introduced into genotypes during mutations. Note: these settings
work for fO and f1 genotype formats, and not (yet) for f4. f4 uses "NGTS*|@" neuron set.

Genetics: fO
Relative mutation probabilities for f0 genotype language.

Genetics: f1

Settings for_f1 genotype language.

Excluded modifiers let you disable using some genotypic symbols during mutations: you can prevent some
features from being present in the evolved genotypes. Excluding 'E' and 'e' is needed when energetic
efficiency mode is disabled (so that the creatures will not change their starting energy). And, for example, if
you don't want your creatures to use different sticks' weights to improve swimming ability in water, exclude
‘W' and 'w'.

Proportional crossover: when turned off, random substrings of two parent genotypes are exchanged to form
two offspring genotypes (in two-point crossing over). When turned on, cut points in the second parent will be
selected proportionally (based on neural genes) to the cutpoints chosen randomly in the first parent. Thus, i

9 Simulation Parameters 35

both parents have the same number of neurons, then this will be preserved in their children. If, additionally,
both parents have identical bodies and neural genes are aligned in both parent genotypes, then their childre
will also have identical bodies. This may be important if you perform crossover only within species (among
similar genotypes — individuals).

Genetics: f1: Morphology contains detailed mutation probabilities concerning physical structure parts in
genotypes. Genetics: f1: Neuron net contains detailed mutation probabilities concerning neuron net parts in
genotypes.

Genetics: f4

Detailed mutation probabilities concerning f4 genotype language. When mutation occurs, it can be either Ad
node, Delete node, or Modify node. Values expressing probabilities can be adjusted here. Mutation types ar
shown below.

» Add node
¢ Add division
¢ Add neural connection
¢ Add neural parameter
¢ Add repetition
¢ Add random symbol

* Delete node

» Modify node

The number of codes which are randomly mutated is also random, varying from 0% to 25% of the genotype
genes.

Genetics: Similarity

Determines how the dissimilarity of two genotypes is evaluated. This is important during crossing over, whic
can depend on the dissimilarity of the two parent genotypes (and can make crossing over of differing
genotypes impossible). Similarity can also be involved in fitness reduction for speciation and creating niches
Enter weights for genotype/phenotype criteria concerning 'body' and 'brain’. Refer to scientific papers (a dra
from Theory in Biosciences 120, or a LNCS paper) for the idea of dissimilarity computation method (since
publication time, the procedure has been updated in minor details). Dissimilarity is also used for clustering o
individuals using UPGMA method.

Genetics: Conversions

Specific converters can be enabled and disabled here. They convert various formats of genotypes. Unless y
are an experienced user, leave all of them enabled.

9.6 User scripts

These scripts are loaded automatically from the "scripts" subdirectory. Advanced users can create their own
scripts.

9.7 Neurons

Neurons: Simulation

http://www.frams.alife.pl/common/Komosinski_Similarity_TheoryInBiosc2001.pdf
http://www.frams.alife.pl/common/Komosinski_TaxonomyAlife_ECAL2001.pdf

9 Simulation Parameters 36

Random initialization: if set to zero, neuron states are equal to zero when each individual is created from its
genotype and put into the simulator. If you enter a positivie value, neural states are random, and thus NN
control has to be more robust (and does not depend on specific initial state values).

Neurons: Active

These settings decide which neurons are simulated in creatures. If a neuron is inactive, its state is initialized
when a creature is 'born’, and then the state does not change.

10 "Standard" experiment definition: parameters
reference

This is the basic experiment definition, which can be used to perform a range of common experiments.
Advanced users can create their qwn experiment definitions.

Genotypes are stored on the genotypes list. The main idea of this experiment is to evaluate them and create
new, probably 'better' ones. Every entry on the genotypes list represents a group of identical genotypes.

There are two main parameters of the system architecture: the capacity of genotypes list (N) and the capaci
of the virtual world (n). The main routine schedules an individual (a genotype) to the world simulator in order
to test it (when there is a free space there, it is, when the number of simulated individuals is less than n). Aft
its death the fitness value is calculated (see: Parameters: Fitness).

// crossouer\\\
Note that when n=1, /\\ mutation >
there are no interactions s, Tepar
between simulated GENE POOL EVALUATE GEN§DTYF’[E "_":_j_-;} VIRTUAL
creatures and the system L WOBLD
performs like a typical
evolutionary algorithm, I ! 1 MAX. n
where the fitness of an GENOTYFES --:’.__%___M_LIPDATE FERFOCRMAMNCE INDIVIDUALS
individual does not ~
depend on the other
individuals.

"standard.expdef" system architecture.
See_animation.

10.1 Tasks performed in each simulation step

« if needed, create new creatures in the world (depends on 'simulated creatures' settings — n)

« if population on the genotypes list exceeds 'capacity’ (N), some genotypes have to be deleted (see
parameters below)

« calculate next step in a 3D world simulation (muscles and neurons: new positions, forces, excitations
etc.)

* calculate energy flow

« if some creatures run out of energy, "kill" them and update the genotypes' performance.

Shortcuts for this page:
Parameters

Selection
Fitness

Enerqgy

http://www.frams.alife.pl/common/std_expdef.html

10 "Standard" experiment definition: parameters reference 38

See also:

General simulation parameters

10.2 Parameters

Initial genotype: the genotype placed in gene pool when the "Initialize experiment" action is called.
Gene pool capacity: the maximal number of genotypes (including copies) in the gene pool.
Delete genotypes: which genotypes will be deleted when capacity limit is reached:

* Randomly

« Inv. proportional fithess (Better fitness = lower chances for deletion)

* Only the worst (remove the one with minimal fitness)
Simulated creatures: the number of creatures automatically put into the simulated world.
Reset performace data: sets "copies" count to zero for each genotype. Thus performace values are
meaningless, and first genotype evaluation (and performance averaging, when copies will turn to 1) will
override them.

Parameters: Selection

How to choose genotypes for simulation, and how to modify them. Enter how many genotypes relatively will
be

» Unchanged — the new genotype is a copy (clone) of the existing (selected) one

» Mutated — the new genotype is a mutation of the existing (selected) one

« Crossed over — the new genotype is a crossover of the existing (selected) two
Minimal similarity: Only the genotypes that are less dissimilar (i.e. more similar) than the given threshold car
be crossed-over. This disables breeding of totally different genotypes, whose offspring would probably be
inefficient/unable to live. See also Genetics: Similarity.

Parameters: Fithess

These parameters describe how the genotypes' fithess is calculated. Fitness is the weighted sum of criteria
shown.

Velocity and Distance are calculated from creature's center of gravity position measured during its lifetime.
Turn on criteria normalization to have the criteria hormalized to the interval [0,1] before weighting.

Use similarity speciation to reduce the fitness of genotypes in the gene pool according to their pairwise
phenotypic similarity. Note that this operation is time consuming, and reqé@edissimilarity computations

every time the gene pool contents changes. See also Genetics: Similarity.

Parameters: Energy

10 "Standard" experiment definition: parameters reference 39

Starting energy: new creature's starting energy (per one stick). This parameter is the base energy value whe
no energy modifiers ('E'/'e' genes) are used. Such genes modify the actual energy relative to this setting.

Idle metabolism: energy requirement for one living stick per one simulation step.

Automatic feeding: a given number of energy balls will be placed randomly in the world all the time.
Ball's energy: amount of energy in one ball.

Ingestion multiplier: how fast a creature can ingest energy.

Aging time: When a World
positive value is set,
energy consumption
(Idle metabolism) gro
non-linearly with life
time (see picture belo
This setting can be usel
to stop creatures whic
ingest more energy tha
they spend from living
forever.

3151.72

Energy

-356635

11 Tips on evolution design, parameters, etc.

Framsticks has a powerful, flexible simulator capable of performing various evolutionary processes. Here yc
will find help concerning setting simulation parameters and general tips on evolutionary process design. The
text below concerns the "standard" experiment definition only. Qther experiment definitions can be used,
extended or developed.

The first question you have to answer is whether you want to simulate a directed or a spontaneous evolutior
If you want to run a directed evolution, you will have to explicitly define the fitness criteria used for
evaluating of evolved creatures. The simulator will select creatures which are better according to the criteria
you choose. You may try to run some kind of a spontaneous evolution, where you will have to define the rul
of living/survival of virtual creatures, and use life span as the selection criterion. Thus the life span will serve
as an estimate of reproductive abilities of creatures. A better realization of a spontaneous evolution is
available within the reproduction.expdef experiment definition.

11.1 Directed evolution

When performing a directed evolution, the user has to choose the optimization criteria explicitly. This is
generally set in the Experiment | Parameters | Selection window. There you set weights for all the criteria. F
example, if you set all the weights to zero except "Structure size", the fithess of creatures will correspond
exactly to their size. Thus during the evolution bigger creatures will be selected more often than smaller one
All other fitness criteria of creatures will be ignored.

You can choose many criteria with different weights. You can even use negative numbers. For example,
setting "Velocity" to a positive number and "Structure size" to a negative number causes a preference for fa
but small creatures. Of course you have to carefully adjust the actual weight values so that the proper trade
is maintained. Setting the "Lifespan” criterion to a non-zero value simulates a spontaneous evolution and yo
should read the "Spontaneous evolution" section (below).

It is important to consider turning on the scaling mechanism, which allows scaling of fitness values in a
population. This mechanism normalizes fitness values so that the best genotype is (after scaling) always the
same number of times better than the average one. Therefore, better individuals are constantly more prefer
during selection, no matter how much better they are. If you are using a tournament selection, consider the
tournament size (the bigger the size, the stronger the selection pressure).

In most cases, during a directed evolution effects of interaction of many individuals in the simulated world ar
not important. Thus you can set "Simulated creatures" to 1 (to evalutate only one creature at a time).

When simulating speed-oriented evolution, you should generally set high values for "Performance sampling
period", enable "Performance calculation" after stabilization, set "Starting energy" to 100 or more (to allow a
reasonable time of living and speed evaluation after stabilization), and set world "Boundaries" to "None". Yo
can also exclude some characters from the genotype. See "General remarks".

11.2 Spontaneous evolution

With spontaneous evolution, the user has to define more parameters and be more careful. The "Lifespan”
criterion should be set to a positive weight. The number of simultaneously "Simulated creatures” should be
adjusted in conjunction with the world size, so that not too many of them are simulated, but the interaction is
still possible.

11 Tips on evolution design, parameters, etc. 41

"Aging time" should be set to a positive value. You might also set positive values for "Muscle static work",
"Muscle dynamic work", "Assimilation energy" and "Automatic feeding”, depending on how realistic model
you wish to simulate. "Boundaries" may be set to "Teleport" and the world can be land or water.

Remember, the evolution is not directed by any criteria except the life span. The creatures are not evaluatec
for their specific actions; any behavior that causes prolonged life span is rewarded.

11.3 General remarks

Note that most of the settings described are to be adjusted reasonably, and it is recommended that you kno
how they work. Being familiar with genetic algorithms and other evolutionary optimization techniques is a
great advantage and help.

You should study the meaning of the parameters and anticipate their behavior; it is also good to think over tl
loop of the evolutionary process simulated in Framsticks and ensure that the settings are rational. Always re
hints (tips) about the parameters.

To allow speciation, you can set the "Similarity speciation" and, possibly, the "Genetics: similarity"
parameters. See also the "Minimal similarity" parameter.

To simplify the creatures, you may disable some maodifiers, receptors and control. You can also disallow
undesirable behavior in this way. For example, when simulating creatures on land and evolving them for
speed, the S (Smell) receptor is not required. A lot of modifiers (ingestion, assimilation etc.) are also
redundant in this situation and should be excluded. Similarly, the T (Touch) receptor is not needed under
water (except for touching the bottom, which should most probably not be perceptible by creatures).

Good default values that you should not worry about are those in "Genetics: structure”, "Genetics: neuron ne
and "Genetics: similarity”. "Death" should generally be turned on, unless you are interactively experimenting
with the simulation.

A detailed description of all the parameters is available here.

12 Experiment definitions summary

This page summarizes basic experiment definitions that are available within Framsticks. Each section prese
one experiment definition along with its properties and short descriptions. All these settings are available in
the Framsticks GUI and for scripts.

Jump to experiment definition:

« Standard Experiment

» Asexual reproduction in the world

» Demonstration of evolution

» Neuroanalysis

» Learn where food is. explore and exploit
* Boids

» Generational evolutionary optimization experiment
* Mazes

» Text writer

 Dance

» Framsbots - Game

« Batch evaluation of loaded genotypes

12.1 Experiment definition: Standard Experiment

(short name: standard)

This experiment definition can be used to perform a range
of common experiments. It provides

— one gene pool

— one population for individuals

— one "population” for food

— steady—state evolutionary optimization

— fitness as a weighted sum of performance values
— or custom fitness formulas

— fitness scaling

— selection: roulette or tournament

— multiple evaluation option, average and standard deviation available
— can produce logs with average and best fitness
— can detect stagnation and stop automatically

— can save best genotypes

This experiment definition has 39 properties — see table below:

Experiment: Parameters

The gene pool will be replaced with the supplied genotype when the
Initial genotype experiment begins.
Use the empty initial genotype if you want to preserve the current gene pool.

Gene pool capacity

12 Experiment definitions summary 43
Delete genotypes
Simulated creatures

For 'Central' placement, newborn creatures are placed at the world center, if

Initial placement)
P possible.

Initial orientation Initial heading of newborn creatures

Vertical position (above the surface) where newborn creatures are placed.
Negative values are only used in the water area:
Initial elevation 0 = at the surface
—0.5 = half depth
—1 = just above the bottom

Sets the number of instances of each genotype to zero (as if it has never been
Clear performance evaluated).
info Genotype performance values stay intact, yet they are meaningless if a
genotype has no instances.

Experiment: Parameters: Selection
Unchanged

If more than zero:

— each genotype will be evaluated many times

— fitness will be averaged

— fitness standard deviation will be stored in the 'userl' field of a genotype

— there will be no "Unchanged" genotypes ("Unchanged" value is considered
zero).

Multiple evaluation

Mutated
Crossed over

Only genotypes with dissimilarity below this threshold will be crossed over.

Minimal similarit -
y Value of 0 means no crossover restrictions.

Selection rule

Experiment: Parameters: Fitness

Constant Constant value added to total fithess

Life span Weight of life span in total fithess

Velocity Weight of horizontal velocity in total fithess

Body parts Weight of body size (number of parts) in total fithess
Body joints Weight of structure size (number of joints) in total fitness
Brain neurons Weight of brain size (humber of neurons) in total fitness

Brain connections Weight of brain connections in total fithess

Distance Weight of distance in total fithess

12 Experiment definitions summary

Vertical position
Vertical velocity

Criteria
normalization
Similarity
speciation

44
Weight of vertical position in total fithess

Weight of vertical velocity in total fitness
Normalize each criterion to 0..1 interval before weighting

If enabled, fithess of each genotype will be reduced by its phenotypic
similarity to all other genotypes in the gene pool

Experiment: Parameters: Energy

Starting energy
Idle metabolism
Automatic feeding

Food's energy

Food's genotype

Ingestion multiplier

Aging time

Base starting energy level (for each stick)
Each stick consumes this amount of energy in one time step

Number of energy pieces in the world

The default food model is a simple, single part object:
/110
m:Vstyle=food

(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent” or mobile food.

Idle metabolism doubles after this period (0 disables aging)

Experiment: Parameters: Extras

Stagnation (auto
stop)

Minimal fithess

Boost phase after
stagnation

Sound on

improvement

Save improvements

Log fitness

No improvement period required to stop simulation (stagnation). O disables
automatic stopping.

Minimal fitness that allows to automatically stop evolution when stagnation
detected

After stagnation has been detected, switches negative selection to "delete
worst", doubles "multiple evaluation" and starts another stagnation detection
phase.

"Delete worst" results in extremely quick convergence and high selection
pressure, similarly to "local search" optimization techniques.

Emit sounds on improvements? (frequency depends on the magnitude of
improvement)

Saves (on each improvement) best found genotype or a complete experiment
state to a file in scripts_output subdirectory.

Sends [LOG] messages with genotypes count and minimal, average and best
gene pool fithess, which can be used to produce graphs by external tools like
gnuplot or Excel.

It also sends the [LOGTITLE] message on experiment initialization, which
summarizes most important parameters of your experiment. It can be used as
a graph title.

12 Experiment definitions summary 45

12.2 Experiment definition: Asexual reproduction in the
world

(short name: reproduction)

Spontaneous evolution. Each creature with a sufficient energy level produces an offspring, which is
then put close to its parent.
Food is created at a constant rate and placed randomly.

This experiment definition has 11 properties — see table below:

Experiment: Parameters
Initial genotype

Vertical position (above the surface) where new creatures are
revived.

Negative values are only used in the water area:

0 = at the surface

—0.5 = half depth

—1 = just above the bottom

Creation height

Mutations

o Restart automatically this experiment after the last creature has

Restart after extinction .
died?

Experiment: Parameters: Energy

Starting energy Initial energy for the first creature

Reproduction energy Creature can produce offspring when its energy level reaches this

threshold
Idle metabolism Each stick consumes this amount of energy in one time step
Feeding rate How fast energy is created in the world

Food's energy

The default food model is a simple, single part object:
/110
m:Vstyle=food
Food's genotype p:
(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent” or mobile
food.

Ingestion multiplier

12 Experiment definitions summary 46

12.3 Experiment definition: Demonstration of evolution
(short name: evolution_demo)

This experiment definition demonstrates the process of evolution.

Individuals are placed in a circle. A new individual is cloned, mutated or crossed over.

Then it is evaluated in the middle of the circle, and, depending on its fithess, may replace a poorer,
existing individual or disappear.

This experiment definition has 19 properties — see table below:

Experiment: Parameters

Initial genotype, mutated to create initial population of genotypes.
Initial genotype You need to (re)initialize the experiment to (re)create initial population
of genotypes.

Delete genotypes

You need to (re)initialize the experiment to change this setting and

Simulated creatures . . i .
create initial population of given size.

Initial orientation Initial heading of newborn creatures

Vertical position (above the surface) where newborn creatures are
placed.

Negative values are only used in the water area:

0 = at the surface

—0.5 = half depth

—1 = just above the bottom

Initial elevation

Predefined setup

Number of simulation steps for the creature in the center of cratures
circle.
Beware to performance sampling period when setting this value.

Number of steps each
creature lives

Number of idle visualization steps:
— after parent (parents) approaches (approach) the center and before
new creature is born in the world
— after new creature is born in the world and before parent (parents)
returns (return) to original place (places)

Number of idle — after central creature disappearance

visualization steps — after replacement of circle circumference creature by central creature
If this parameter is set to zero, than simulation speeds up.
If this parameter is set to big value, then some simulation details may
be better observed.
It is possible to change this value during simulation, to obtain different
goals.

Experiment: Parameters: Selection

Unchanged

12 Experiment definitions summary 47
Mutated
Crossed over

Only genotypes with dissimilarity below this threshold will be crossed
Minimal similarity over.
Value of 0 means no crossover restrictions.

Selection rule

Experiment: Parameters: Fitness

Constant Constant value added to total fitness

Vertical position

Velocity Weight of horizontal velocity in total fithess

Body parts Weight of body size (number of parts) in total fitness
Criteria normalization Normalize each criterion to 0..1 interval before weighting

If enabled, fitness of each genotype will be reduced by its phenotypic

Similarity speciation o .
Y Sp similarity to all other genotypes in the gene pool

12.4 Experiment definition: Neuroanalysis

(short name: neuroanalysis)

This experiment evaluates all genotypes in the gene pool.
During simulation, the output signal of each neuron is
analyzed, and its average and standard deviation

are computed. These data are then saved in the 'Info’
field of the genotype.

This experiment definition has 3 properties — see table below:

Experiment: Parameters
Evaluation time

Restart from the first
genotype

Vertical position (above the surface) where newborn creatures are
placed.

Negative values are only used in the water area:

0 = at the surface

—0.5 = half depth

—1 = just above the bottom

Initial elevation

12 Experiment definitions summary 48

12.5 Experiment definition: Learn where food is, explore
and exploit

(short name: learn_food)

When an individual encounters food, it eats a bit of it and remembers its location.

It also gets "refreshed" (i.e. gets a full amount of energy). Energy of each

individual provides information on how recent (current) is the food location

information that the individual stores. Information recency is visualized as

brightness of individuals (light green ones have recently found food).

When individuals collide, they learn from each other where food is (by averaging their knowledge).
A newborn individual moves randomly and receives (duplicates) knowledge from the

first knowledge—rich individual that it collides with.

An individual that cannot find food for a long period of time dies, and a newborn

one is created.

An interesting phenomenon to be observed in this experiment is how sharing information

helps explore food location. Food items can be added either close to previous items,

or randomly (in the latter case, the information about food location is not very useful

for individuals). You can turn off automatic feeding and keep adding food manually to see

how learning influences behavior of the population. See the "share knowledge" parameter (on/off).

With learning, individuals do not have to find food themselves.

They can also get in contact with other individuals that know

where the food was, and exchange information (the values learned

are proportional to the recency of information). It is interesting

to see how knowledge sharing (cooperation, dependence) versus

no sharing (being self—sufficient, independence, risk) influences minimal,

average and maximal life span in the neighboring and random food placement scenarios.

Notions of exploration of the environment and exploitation of knowledge
about the environment are illustrated as well in this experiment.

The dynamics of this system depends on the following parameters:

— number of individuals and world size

— size and shape of their body (affects collisions and sharing of knowledge)

— food eating rate

— food placement (neighboring or random)

— learning strategy (e.g. weighted averaging of food coordinates)

— behavior (e.g. move within circles, small after finding food, then larger and larger)

Technical:
Food location (x,y) is stored in userl,2 fields of each individual.

12 Experiment definitions summary 49

This experiment definition has 11 properties — see table below:

Experiment: Parameters

Number of
creatures

Share knowledge Share knowledge about food position when two creatures collide?
Initial genotype

Vertical position (above the surface) where new creatures are revived.
Negative values are only used in the water area:
Creation height 0 = at the surface
—0.5 = half depth
—1 = just above the bottom

Experiment: Parameters: Energy

Starting energy Initial energy for the first creature

Idle metabolism Each stick consumes this amount of energy in one time step
Feeding rate How fast energy is created in the world

Food's energy

Food placement) : -
P a test/benchmark for this experiment definition.

The default food model is a simple, single part object:
/10
Food's genotype :::Vstyle:food

(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent” or mobile food.

Ingestion
multiplier

12.6 Experiment definition: Boids

(short name: boids)

Boids, developed by Craig Reynolds in 1986, is an artificial life program, simulating the flocking
behaviour of birds.

As with most artificial life simulations, Boids is an example of emergent behaviour; that is, the

Random placement contradicts 'learning food location' and therefore constitutes

complexity of Boids arises from the interaction of individual agents (the boids, in this case) adhering

to a set of simple rules. The rules applied in the simplest Boids world are as follows:

* separation: steer to avoid crowding local flockmates
* alignment: steer towards the average heading of local flockmates
* cohesion: steer to move toward the average position of local flockmates

12 Experiment definitions summary 50

(http://en.wikipedia.org/wiki/Boids)

This experiment definition has 6 properties — see table below:

Experiment:
Parameters

Number of boids
Rule 1 - Separation
Rule 2 - Alignment
Rule 3 - Cohesion
Neighborhood range

Separation distance

12.7 Experiment definition: Generational evolutionary
optimization experiment

(short name: generational)
A simple "genetic algorithm" experiment:

— two gene pools (previous and current generation)

— one population for individuals

— generational replacement of genotypes

— selection: roulette (fithess—proportional)

— fitness formula entered directly into the group's field

This experiment definition has 8 properties — see table below:

Experiment: Parameters

Initial genotype

Gene pool size

Evaluation time

Restart epoch Re—evaluate all genotypes in the current generation

Vertical position (above the surface) where newborn creatures are placed.
Negative values are only used in the water area:
Initial elevation 0O = at the surface
—0.5 = half depth
—1 = just above the bottom

12 Experiment definitions summary 51
Experiment: Parameters: Selection
Unchanged
Mutated

Crossed over

12.8 Experiment definition: Mazes

(short name: mazes)

This experiment definition can be used to evaluate (and evolve)
creatures moving between two specified points in a maze. These points
are indicated by start and target marks (in the second population).

Genotype's userl field (which acts as a maximized fitness) contains
— energy left (when target found during lifespan)

— distance to the target (as a negative value)

when a creature died away from the target.

Press "SHIFT" and click the right mouse button to manually set
the start and finish points.

Use maze[1,2].sim settings for this experiment definition.

This experiment definition has 39 properties — see table below:

Experiment: Parameters

The gene pool will be replaced with the supplied genotype when the
experiment begins.

Use the empty initial genotype if you want to preserve the current
gene pool.

Initial genotype

Gene pool capacity
Delete genotypes
Simulated creatures

For 'Central' placement, newborn creatures are placed at the world

Initial placement . :
P center, if possible.

Initial orientation Initial heading of newborn creatures

Vertical position (above the surface) where newborn creatures are
placed.

Negative values are only used in the water area:

0 = at the surface

—0.5 = half depth

—1 = just above the bottom

Initial elevation

12 Experiment definitions summary

Start X positions

Start Y positions

Start headings

Target X positions

Target Y positions

Target radius

Clear performance info

52

A comma-—separated list of X positions (based on the world map) of
starting points

A comma-—separated list of Y positions (based on the world map) of
starting points

A comma-—separated list of initial headings (in degrees)

A comma—separated list of X positions (based on the world map) of
target points

A comma-—separated list of Y positions (based on the world map) of
target points

The target is a circle with the radius defined here

Sets the number of instances of each genotype to zero (as if it has
never been evaluated).

Genotype performance values stay intact, yet they are meaningless
if a genotype has no instances.

Experiment: Parameters: Selection

Unchanged

Multiple evaluation

Mutated

Crossed over

Minimal similarity

Selection rule

If more than zero:

— each genotype will be evaluated many times

— fitness will be averaged

— fitness standard deviation will be stored in the 'userl’ field of a
genotype

— there will be no "Unchanged" genotypes ("Unchanged" value is
considered zero).

Only genotypes with dissimilarity below this threshold will be
crossed over.
Value of 0 means no crossover restrictions.

Experiment: Parameters: Fitness

Constant

Life span
Velocity

Body parts
Body joints
Brain neurons

Brain connections

Constant value added to total fithess

Weight of life span in total fitness

Weight of horizontal velocity in total fithess

Weight of body size (number of parts) in total fithess
Weight of structure size (humber of joints) in total fithess
Weight of brain size (humber of neurons) in total fithess

Weight of brain connections in total fithess

12 Experiment definitions summary 53

Distance Weight of distance in total fitness

Vertical position Weight of vertical position in total fitness

Vertical velocity Weight of vertical velocity in total fithess

Criteria normalization Normalize each criterion to 0..1 interval before weighting

If enabled, fitness of each genotype will be reduced by its

Similarity speciation phenotypic similarity to all other genotypes in the gene pool

Experiment: Parameters: Energy

Starting energy Base starting energy level (for each stick)
Idle metabolism Each stick consumes this amount of energy in one time step
Automatic feeding Number of energy pieces in the world

Food's energy

The default food model is a simple, single part object:
/110
m:Vstyle=food
Food's genotype p:
(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent" or mobile
food.

Ingestion multiplier

Aging time Idle metabolism doubles after this period (0 disables aging)

12.9 Experiment definition: Text writer

(short name: text_writer)
This experiment definition displays formatted (and flowing) text using
creatures as letters and digits. It requires the "fonts.gen" file.
Only big letters and digits can be used in the text.
Initialize the experiment to situate the text.
The text can be formatted using HTML-like tags:
<left>
<center>
<right>
<justify> — are used to start a paragraph
<hNUMBER> — sets the height (elevation) of the text (see also the 'Gravity' setting)

<hsNUMBER> — sets hotizontal spacing between letters

<vsNUMBER> — sets vertical spacing between lines

12 Experiment definitions summary 54

<fo>
<f1> — select the font (fO is more regular)

This experiment definition has 3 properties — see table below:

Experiment: Parameters
Text The text you want to see
Collisions When turned on, nearby letters will collide and bounce

Speed Text movement: 1-slowest, 100—fastest

12.10 Experiment definition: Dance
(short name: dance)
A synchronous framsdance :-)

This experiment definition has 38 properties — see table below:

Experiment: Parameters

The gene pool will be replaced with the supplied genotype when the
experiment begins.

Use the empty initial genotype if you want to preserve the current
gene pool.

Initial genotype

Gene pool capacity
Delete genotypes
Simulated creatures

For 'Central' placement, newborn creatures are placed at the world

Initial placement . .
P center, if possible.

Initial orientation Initial heading of newborn creatures

Vertical position (above the surface) where newborn creatures are
placed.

Negative values are only used in the water area:

0 = at the surface

—0.5 = half depth

—1 = just above the bottom

Initial elevation

Land dance
Water dance

Number of dancers

12 Experiment definitions summary
Dance tempo
Change arrangement

Beat

55

Experiment: Parameters: Selection

Unchanged

Multiple evaluation

Mutated

Crossed over

Minimal similarity

Selection rule

If more than zero:

— each genotype will be evaluated many times

— fitness will be averaged

— fitness standard deviation will be stored in the 'userl’ field of a
genotype

— there will be no "Unchanged" genotypes ("Unchanged" value is
considered zero).

Only genotypes with dissimilarity below this threshold will be crossed
over.
Value of 0 means no crossover restrictions.

Experiment: Parameters: Fitness

Constant

Life span

Velocity

Body parts

Body joints

Brain neurons
Brain connections
Distance

Vertical position
Vertical velocity

Criteria normalization

Similarity speciation

Constant value added to total fithess

Weight of life span in total fitness

Weight of horizontal velocity in total fitness

Weight of body size (number of parts) in total fitness
Weight of structure size (number of joints) in total fitness
Weight of brain size (hnumber of neurons) in total fitness
Weight of brain connections in total fithess

Weight of distance in total fithess

Weight of vertical position in total fitness

Weight of vertical velocity in total fitness

Normalize each criterion to 0..1 interval before weighting

If enabled, fithness of each genotype will be reduced by its phenotypic
similarity to all other genotypes in the gene pool

Experiment: Parameters: Energy

Starting energy

Base starting energy level (for each stick)

12 Experiment definitions summary 56
Idle metabolism Each stick consumes this amount of energy in one time step
Automatic feeding Number of energy pieces in the world
Food's energy

The default food model is a simple, single part object:
/110
m:Vstyle=food
Food's genotype p:
(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent" or mobile
food.

Ingestion multiplier

Aging time Idle metabolism doubles after this period (0 disables aging)

12.11 Experiment definition: Framsbots - Game

(short name: framsbots)

Framsbots is a simple game inspired by the classic Robots game.

The aim of this game is to run away from hostile creatures and make all of them hit each other.

Just click somewhere (left—click or double—right—click) to move your creature (the one that is in the
middle of the world in the beggining). Your creature will go towards the point you clicked.

All the enemies will move towards you. Use this information to make them hit each other, so they wil
loose energy and die.

If you see an apple, try to get it. You will gain energy and you may even get a new life!

Use shift+left mouse drag to rotate world.

Read more about this game:
http://lwww.framsticks.com/wiki/FramsBots

This experiment definition has 16 properties — see table below:

Experiment: Parameters

Enemy creature type

Player creature type

Level Number of a level to play (-1 is random)
Show additional debug messages

Experiment: Parameters: Enemies

Number of enemy creatures

Starting energy of enemy creature Base starting energy level

12 Experiment definitions summary 57
Multiplier of energy taken by Enemy
Multiplier of energy taken by frozen Enemy
Multiplier of energy taken when Enemies collide
Multiplier of energy taken from alone Enemy
What to do when Enemies die
Experiment: Parameters: Player
Starting energy of player creature Base starting energy level

Experiment: Parameters: Food

Starting energy of food Base starting energy level
Amount of energy lost How much energy food looses each step
Food probablity Probability of food appearing after enemy killed

Experiment: Parameters: Azimuth

Maximum length of positions history vectors

12.12 Experiment definition: Batch evaluation of loaded
genotypes

(short name: standard-eval)

Use this experiment to evaluate all genotypes one by one.
Use gene pool capacity parameter to set the required number of evaluations of each genotype.

The genotypes for evaluation _must_ be different.

First load your genotypes for evaluation, then initialize experiment,
then adjust all simulation parameters, and finally run the simulation
to perform all evaluations.

After evaluation, fithess of each genotype contains the average fitness,
userl field contains standard deviation, and user2 field contains the
average time (in seconds) needed for single evaluation.

This experiment definition has 33 properties — see table below:

Experiment: Parameters

The gene pool will be replaced with the supplied genotype when the
Initial genotype experiment begins.
Use the empty initial genotype if you want to preserve the current gene pool.

Gene pool capacity

12 Experiment definitions summary 58
Delete genotypes
Simulated creatures

For 'Central' placement, newborn creatures are placed at the world center, if

Initial placement)
P possible.

Initial orientation Initial heading of newborn creatures

Vertical position (above the surface) where newborn creatures are placed.
Negative values are only used in the water area:
Initial elevation 0 = at the surface
—0.5 = half depth
-1 = just above the bottom

Sets the number of instances of each genotype to zero (as if it has never been
Clear performance evaluated).
info Genotype performance values stay intact, yet they are meaningless if a
genotype has no instances.

Experiment: Parameters: Selection
Unchanged

If more than zero:

— each genotype will be evaluated many times

— fitness will be averaged

— fitness standard deviation will be stored in the 'userl' field of a genotype

— there will be no "Unchanged" genotypes ("Unchanged" value is considered
zero).

Multiple evaluation

Mutated
Crossed over

Only genotypes with dissimilarity below this threshold will be crossed over.

Minimal similarit .
y Value of 0 means no crossover restrictions.

Selection rule

Experiment: Parameters: Fitness

Constant Constant value added to total fithess

Life span Weight of life span in total fithess

Velocity Weight of horizontal velocity in total fithess

Body parts Weight of body size (number of parts) in total fithess
Body joints Weight of structure size (number of joints) in total fitness
Brain neurons Weight of brain size (number of neurons) in total fitness

Brain connections Weight of brain connections in total fithess

Distance Weight of distance in total fithess

12 Experiment definitions summary 59

Vertical position
Vertical velocity

Criteria
normalization
Similarity
speciation

Weight of vertical position in total fithess

Weight of vertical velocity in total fitness
Normalize each criterion to 0..1 interval before weighting

If enabled, fitness of each genotype will be reduced by its phenotypic
similarity to all other genotypes in the gene pool

Experiment: Parameters: Energy

Starting energy
Idle metabolism
Automatic feeding

Food's energy

Food's genotype

Ingestion multiplier

Aging time

Base starting energy level (for each stick)
Each stick consumes this amount of energy in one time step

Number of energy pieces in the world

The default food model is a simple, single part object:
/110
m:Vstyle=food

(this genotype is used when you leave this field blank).
You can specify another genotype to create "intelligent" or mobile food.

Idle metabolism doubles after this period (0 disables aging)

13 Graphical User Interface (GUI) for Windows

Other interfaces:

» command line (all
platforms)

» Amiga GUI
» network server

See also__Interface parameters, Simulator parameters
Bottom: Mini-tutorial, GUI command-line usage

13.1 Introduction

Click on the "Window" menu. Notice that there are seven windows to show/hide. By default, five of them are
already open: Groups, Artificial world, Body & Brain, and two lists: genotypes and individuals. Genotypes
and individuals (or, generally, simulated objects) can be grouped into Gene pools and Populations,
respectively.

You can revive individuals by selecting their genotypes (upper list) and pressing the "Simulate" button. The
selected genotypes are then "grown" and placed in the artificial world. Selecting them on the "Populations™
list makes the camera follow the selected creatures (display rate is adjustable in the listbox in the top right

corner of the world window).

Use the menu to start and stop the simulation. You can also invoke some functions using the toolbar on the
top, or using keyboard shortcuts.

You can kill or delete living creatures using buttons. Killing means that the program treats the creature as if|
energy had reached zero (so it is like a "natural" death). Deleting means just removing it from simulation.

Update listbox (in the "Populations" window) sets the frequency for refreshing information about genotypes,
creatures, etc. When you double-click a genotype on the list, the genotype data window will be opened:

13.2 Genotype data window

You can see/edit properties of genotypes. While editing the genotype, you can interactively see the changes
(instant body and brain preview), as long as the genotype is valid. Selecting a genotype fragment highlights
parts of the morphology and brain which are created by the fragment. It also works the other way: you can
select body or brain parts to see what genes are responsible for creating these parts (these genes are
underlined). Hold down the Shift key while selecting parts of body and brain to add new parts to the selectio
or to toggle them.

You can give any name to your creature (‘Name' field). If you leave it blank, the name will be generated
automatically.

13 Graphical User Interface (GUI) for Windows 61

13.3 Body and brain window

In the body panel, left click selects parts of the body or neurons/receptors/effectors. Hold down Shift to add
more parts to the selection. Right mouse drag rotates the structure. The mouse wheel zooms.

In the brain panel, left click selects parts of the brain: neurons, receptors, and eff8ctors. —
Hold down Shift to add more parts to the selection. The mouse wheel zooms. You can _ D
move neurons by draging them while you hold the Shift key down. Press the Alt key r e
and drag the mouse horizontally to zoom the neural diagram (as shown on the right ;l

picture). When zoomed, you can drag the diagram to pan it.

] e . When the neural network shown belongs
#16 - M [Neuran] B #2 - N (Neuran) B4 to a living creature, double clicking on a

m_ neuron makes a signal window pop up.
of =

You can not only see signal flow in

signal: 0.636 A neurons, but also adjust levels of
excitations and thus control the brain of a
{> ﬁ'ﬁ living creature (as shown on the left

held 0.576 4 picture). Also, neural connections are
iz,_ {> {> {> {> {?'ﬁ Click to release| displayed in various colors reflecting the
signal level. Click on the scale indicator
h h (the green "1x") and drag the mouse
{>’ ﬁiﬁ ‘D’ ﬁiﬁ horizontally to scale the chart.

Helpful hints are displayed when you stop the mouse pointer over an object.

13.4 Artificial world window

In this window, left mouse drag rotates the world. Right mouse drag pans the view, and mouse wheel zoom:
Double clicking on a simulated object will focus the camera on that object (although this will not be reflected
by a selection of that object on the populations list).

Press Shift + right mouse click to invoke an action from the action list. Right double click will invoke the first
action from the list without displaying it.

Press Control + left mouse click to grab some object with a robot arm and move it by dragging the mouse.

Release the left mouse button first to drop the object. Release the Control key first to leave the robot arm
holding the object.

13.5 More hints

Be sure to explore the menus which appear when you click on a small arrow in top left corner of windows.
Also, right click on genotypes and individuals which are listed in gene pools and populations to see many
options.

Messages produced by the program can be viewed in the "Messages" window.

13 Graphical User Interface (GUI) for Windows 62

13.6 A GUI mini-tutorial

1. Launch the Framsticks application

2. Load genotypes from walking.gen (Menu:File->Load genotypes from...)

3. Load parameters from manual.sim (Menu:File->Load simulator parameters from...)

4. Select 'Basic Quadruped' on the Genotypes (upper) list

5. Click the Simulate button and choose the "Creatures" population

6. Select '‘Basic Quadruped' on the Individuals (lower) list

7. Start simulation (Menu:Simulation->Run)

8. You can watch as the creature moves, play with it, grab with the mouse (control + left mouse button)
move the camera (left or right drag on the world window), zoom (mouse wheel), etc.

9. Double-click on the 'Basic Quadruped' in the upper window to examine its data.

10.Want to try out your own creature? Look at the ‘genotype’ section, and try to modify it or create a ne\

one. Then you can place it in the simulator world.

If you would like to start some evolution now, you should change some parameters: turn on 'death’ — creatur
will be removed when they run out of energy, set the number of creatures to be placed automatically in the

world, set the selection criterion... and of course enter the starting genotype in the genotypes list: this can be
the simple 'bacteria’ (single X) or you may wish to improve any other genotype by evolution.

13.7 Command-line parameters for the Framsticks GUI

Framsticks.exe [-go | -demo] [-help] [file.sim] [file.gen] [...]

Examples:

Framsticks.exe evll_11.gen evll_12.gen
Framsticks.exe water.sim ev.gen -go

Framsticks.exe -demo demo-chase.sim demo-chase.gen
Framsticks.exe manual.sim

The first example loads two genotype files.

The second example loads a water environment and a genotype file, and starts evolution.

The third example loads an environment and genotypes, and runs the demo mode (80% displaying time, 20
pure simulation).

The fourth example loads a simulator settings file.

13.8 Advanced notes

» Simulator settings files may contain partial information (only a subset of parameters). That may be
very useful when defining various environments and batch processing.

* You can drag *.gen, *.sim, and *.expt files and drop them on Framsticks.exe file in order to launch
Framsticks and load the dragged files. You can also double-click files with such extensions to launct
Framsticks and load the clicked file.

14 Interface parameters

If you need help, read the hints (tooltips) which appear when you stop the mouse pointer over the name of ¢
parameter in the program. Documentation below is provided in addition to those hints and discusses only
some issues.

See also:

Simulation Parameters
Interface

This page:

General

Visual style
Performance charts
Simulator charts

Export world

14.1 General

Save on exit: save all settings from this window when you exit Framsticks?

Demo mode: allows you to leave your computer evolving, while occasionally displaing simulated creatures.
However, display slows down simulation, so the less % of time you choose, the faster the evolution will
proceed. Using "demo mode" is good for demonstrations and presentations of Framsticks.

Keep extensions associated: should be turned on if you want Framsticks file extensions to be associated wi
this program. This allows you to open such files by double-clicking them, and also displays appropriate icon

for such files. When this option is turned on, Framsticks ensures that these associations are valid each time
you run the program.

14.2 Visual style

Style: registered users (full license) can choose from a list of visual styles for OpenGL view. Advanced user:
can create their own styles and themes with their own textures and settings. Source code for styles is in the
"3dobj" subdirectory.

14.3 Performance charts

Simulator charts

Performance charts concern living (currently simulated) creatures. You have to select a creature to see its
performance on the chart.

Simulator charts concern genetics, gene pools and populations.

14 Interface parameters 64

Selected property: choose a property (criterion) to add to the Charts window. After you select it, press
"Apply" and then the "Add chart" button.

14.4 Export world

Export world: POV-Ray

Registered users with a "full" license can export scenes from the simulated world in POV-Ray format.
POV-Ray is a powerful, freeware raytracer. To render a scene, you have to install POV-Ray. To make a
movie, you need additional software which joins individual frames rendered by POV-Ray. You can get more
information at the official POV-Ray site, www.povray.org.

Framsticks can create scene files for use with POV-Ray. It gives you the possibility to view photorealistic
pictures and movies from your creatures' artificial world. To render such pictures, POV-Ray needs the
"framsticks.inc" include file, so you have to make it accessible (e.g. copy it to your POV-Ray include
directory). This file is very important, as it contains the definitions of all the rendered objects — sticks,
muscles, receptors, water, fence, hills, etc. If you know POV-Ray, you can even modify this file to obtain
different Framsticks scenarios.

After the export has been enabled, the simulator creates the file "world.inc" in the selected directory (this file
contains all the static objects in the simulated world: ground, sky, light etc.). Then, an exported scene file is
created in each simulation step (but observing the skip frames parameter). Every scene file #includes
"world.inc". If POV-Ray has trouble accessing "world.inc", copy this file to the directory where .pov scene
files are created.

The meaning of POV-Ray export parameters is analogous to those of 'Other formats' section (see below).
scene_%04d.pov is the default output files pattern for POV-Ray export.

Export world: Other formats

Registered users with a "full" license can export scenes from the simulated world in a range of formats.
However, exported files are often simplified, and some formats on the list may be not available.

Output files pattern: when the scene export is enabled, the program creates exported scene files. Names fol
successive scene files are generated automatically. For example, when your output files pattern is
frame_9%05d.ac, you will get the files frame_00001.ac, frame_00002.ac, and so on ('5' in the pattern means
five digits, '0' means zero-padding). If you set the pattern to img%d.ssg, you will get the files img1.ssg,
img2.ssg, and so on ('%d' is simply replaced by consecutive numbers without any special formatting).

Flatten scene: joins all world objects into one object. This is required for most export formats, otherwise you
may only get a single object for each object type.

Enable export: turns on exporting mode, where an exported scene file is created in each simulation step (bu
observing the skip frames parameter). To check whether the program is in exporting mode, see the Export
enabled checkbox.

Export world: OpenGL image

When the OpenGL world view is activated, bitmaps from the world window may be exported as image files.

http://www.povray.org/

15 OpenGL visualisation G

OpenGL is an industrial standard for 3D graphics (see www.opengl.org). It is becoming more and more
popular; the development of new 3D graphics accelerators and faster processors available for everyone ma
it an important and useful standard.

Framsticks OpenGL gives a very impressive three-dimensional view of/t
virtual world and body structures of the creatures. Creatures' sticks arg
displayed as solid cylinders with textures, and all objects are shaded (
like renderings). All this is possible in real time.

Click on the picture to get_a full-sized view. Download a free program, FramsView (for Windows or Linux)
to see 3D OpenGL Framsticks structures. You can also download the trialware Framsticks Theater (for
Windows or_Linux) to see real time, 3D OpenGL view of various simulations.

15.1 Some OpenGL styles

(advanced users can create their own styles!)

ra Artificial world

Standard

(default Framsticks visual
style)

http://www.opengl.org/
http://www.frams.alife.pl/common/dl/FramsViewInstall.exe
http://www.frams.alife.pl/common/dl/FramsViewLin.zip
http://www.frams.alife.pl/common/dl/TheaterInstall.exe
http://www.frams.alife.pl/common/dl/TheaterLin.zip

15 OpenGL visualisation

ra Artificial world

Arena

(around arena)

66

. pa Artificial world

Football

(football players and balls)

15 OpenGL visualisation

Spooksticks

(description_here)

Space

(is there anything more
beautiful
than infinite space?)

-'ﬂ Artificial world

o e e Y. X
i e LT e

http://www.frams.alife.pl/wiki/Spooksticks.html

15 OpenGL visualisation

Laboratory

(biochemical laboratory)

Matrix

(no one can be told
what the matrix is.
You have to see it for
yourself...)

ﬂ Artificial world

16 User Interface — command line

Framsticks command line interface is free. It is faster and simpler than the GUI (no overheads), and it is
recommended, especially for long-term experiments.

To learn about command-line parameters, run frams -?

16.1 Interactive command-line

To run the interactive command-line program (with its own shell), just execute it. (For Windows console, run
frams.exe; for UNIX/Linux, run frams).

Enter help to see help, enter Im to see more options. See frams.ini file, too. Note that you can access class
browser (it is also available in Framsticks GUI).

To quit the program, enter qu, or the End-Of-Line character (*Z for Windows, ~D for UNIX/Linux).

16.2 Command-line

You can use arguments, for example:
frams "lo e0.gen" "st 100000000" "sa last.gen" qu
means that you

« run the program (it always loads default parameters from default.sim)
« load e0.gen (a file with genotypes)

 simulate 100 000 000 steps

* save genotypes to last.gen

* quit (Qu)
Quotation marks are needed for parameters which contain spaces. Another example:

frams "lo exp_03.expt" "go"
means that you
« run the program (it always loads default parameters from default.sim)
« load exp_03.expt (a file with genotypes and simulation settings)
* run simulation until the Control-C (or Control-Break) is pressed
Thus, if the exp_03.expt activates "autosave" option, then you will have periodic snapshot files of the

simulation state. You can examine them with the GUI without stopping the command-line simulation, which
can be interrupted by pressing control-C at any time.

16.3 Batch

You can use batch mode, for example:

frams < commands.txt

16 User Interface — command line

where commands.txt file contains the commands you would enter interactively.

16.4 User-defined actions, scripts and macros

See cliutils.ini file for more examples.

70

17 Script writing

The Framsticks system can interpret commands written in a simple language (FramScript). FramScript can |
used for a range of tasks, from custom fitness functions, macros, and user-defined neurons, to user-defined
experiment definitions, creatures behaviors, events, and even 3D visualization styles.

Understanding FramScript will let you exploit the full potential of Framsticks, because your scripts can
control the Framsticks system. The following documents are related to script writing:

» FramScript syntax
» Contexts, objects, methods, and variables — reference. Temporarily off-line, use Framsticks GUI or

CLI.
» Experiment definitions
* Script writing: _pdf
« Little how-to: pdf
» FramClipse: for easier scripting!

See also the contents of the "scripts" subdirectory, and the *.ini files in the command-line interface
distribution.

18 FramScript language

The FramScript syntax and semantics is very similar to JAVA, C, C++, PHP, etc. In FramScript,

« all variables are untyped and declared using "var" or "global" statements
* functions are defined with the "function" statement

« references can be used for existing objects

* no structures and no pointers can be declared

« there is the Vector object which handles dynamic arrays

« FramScript code can access Framsticks object fields as "Object.field"

Before execution by FVM (Framsticks Virtual Machine), FramScript source code is first translated to FVM
assembler source code, and then transformed to FVM machine code. Scripting is a powerful instrument and
lets an advanced user control the Framsticks environment and use it according to their needs. However, err
reporting while processing scripts is not perfect: if a script is erroneous, do not expect the translator to alway
precisely locate the bug.

18.1 Statements

(brackets [] denote optional parts)

if (expression) statement; [else statement;]

for (expression;expression;expression) statement
while (expression) statement;

do statement; while (expression);
switch(expression) { case constant: statements... default: statements... }
{ statement; [statement;] }

return [expression];

break [level];

continue [level];

label_name:

goto labelname[:];

var name[=expression][,name2[=expression2]][...];
function name([parameter_names]) {statements}
@include "filename"

asm { source code for FVM }

Remarks:
« "level" is a positive integer specifying the loop you want to "continue" or "break". "break 1;" is
equivalent to "break;", "break 2;" refers to the loop containing the innermost loop, and so on.

« "goto" can be dangerous is some cases (like variable declarations jumped over), so it is recommend
to avoid it.

18.2 Variables

Variables must be declared before they are used. Unlike in C, the declaration does not specify the variable
type.

Variables are untyped, but the values are typed. The value can be of one of 5 types: integer, floating point,
string, object reference or the special empty value (null).

Some operators act differently depending on the value type.

18 FramScript language 73

Example:

var int=123, float=1.23, string="123";
int+=0.0001; // result =123
float+=0.0001; // result =1.2301
string+=0.0001; // result = "1230.0001"

That's why sometimes you will need to use constructs like "'+float or O+string, in order to explicitly force
type conversion. Note that the result may be of different type depending on the order of variables (int+string
will be integer, float+int will be floating point, int+float will be integer, etc.). Consequently, float+" "+int will
produce a single floating point value, whereas ""+float+" "+int will produce a string of two values separated
by a space char.

Global variables are declared using the "global" statement. Unlike the local ("var") variables, globals presery
their values between FramScript calls. This is useful when a function is called from outside the code module
as it happens in experiment definitions, styles, neurons and user scripts.

Example:

global counter;
function eventHandler()
{ counter=1+counter; }

function getCount()
{ return ""+counter; }

18.3 Expressions

Most of the C language expressions are also valid in FramScript. This includes arithmetic and logical
operators, parentheses, function calls, and assignments. Moreover, the following FramScript specific
opearator are available:

"typeof" expression — determine the expression value type. The return value should be interpreted a:

follows:
¢ 0 =empty (null)
¢ 1 =integer
¢ 2 =floating point
¢ 3 =string

¢ "classname" = object of class "classname". Thus typeof typeof expression is equal to 3 if and
only if the expression returns object reference
 "." (dot) — member access operator (like in C++). It can be applied to any expressions containing
object references, or to the special static object names. Static object names are equal to the class
names shown in the Class Navigator, e.g.:

var expdefname=Simulator.expdef; // access object field
Simulator.load("experiment.expt"); // invoke object method
var two=Math.sqrt(4); Il invoke object function

There is only one "static object" for each class. Some objects usually have a single instance and are
accessed using this method (like the Simulator or Math in the example above).
Multiple objects of the same class are accessed indirectly with using object references:

var g=LiveLibrary.getGroup(0); Il get the reference
var info="This group is called "+g.name; // use the reference

18 FramScript language 74

Sometimes, the static object is used to create more objects:

var v=Vector.new(); /[static object creates a dynamic object
v.add(123); /I the reference is used
var s=v.size;

"ClassName.*" can be used as a reference to the special static object if it has to be passed to some
function:

var v=callNew(Vector.*);
var d=callNew(Dictionary.*);

function callNew(obj)
{return obj.new();}
".[expr]" — indirect member access operator. Works like the regular "dot" operator but the member

name is passed as an expression:

var which=2;
var value=Genotype.["user"+which]; // works like Genotype.user2
[] — vector operator (vector is a simple array-like object)
The [] operator can be used in two ways:
¢ [exprl, expr2, ...] — vector creation expression. It is a short form of:

v=Vector.new(); v.add(exprl); v.add(expr2); ...
¢ object [expr] — "get" access operator. Works the same as object.get(expr). Thus you
can access a Vector object like a regular array in C:

var v=["one","two","three"];
var third=v([2]; Il == v.get(2)
var d=Dictionary.new();

d.set("name","value");
var value=d["'name"]; // works for any object implementing the "get" method

Note that "object [expr] = expression” will not work, because [] acts as "get". You need to use "set"
explicitly to alter the vector object.

var v=[J; /I empty vector
v.set(10,"10th value"); // v.set(...) will expand the vector when required

Note 2: See the difference between the "get" operator "[]" and the indirect member access operator

e

var d=Dictionary.new();

d.set("size",123);

var vl=d["size"]; // ==123 - equivalent of d.get("size"), gets the previously set value

var v2=d.["size"]; // ==1 - equivalent of d.size, gets the object field value

function FUNCTIONNAME - creates the function reference.

call (FUNCTIONREF)([arguments,...]) — invokes the function using the function

reference obtainad from the "function” operator:

var calltable=[function one,function two,function three];

var selector=1;

var fun=calltable[selector];

var result=call(fun)(argumentl,argument2); // function two will be called

18 FramScript language 75

18.4 Functions
Functions are defined as follows:
function name([parameter_names]) {statements}

All parameters are passed by value (copied). However, an argument (or a return value) can contain object
reference, in which case it is the reference that is actually copied.

A function can return a value to the caller using the "return expression;" statement. If a bare "return;" is usec
the return value is undefined.

Example:

function factorial(n)

{
if (n<3) return n;
return factorial(n-1)*n;

}

Functions can also have multiple names, which is useful when you need many functions with an identical
body — for example:

function onLeftClick,onMiddleClick,onRightClick(x,y)
{

/ldo something...

}
18.5 Using Framsticks classes, methods, and variables

See FramScript reference to learn about internal Framsticks classes, methods, and variables. You can also
the class browser (available both in GUI and command-line interfaces).

19 What is an experiment definition, and how to
create your own expdef

The most important feature of Framsticks is that you may define your own rules for the simulator. There are
no predetermined laws, just a script an experiment definition. This script is a set of instructions in some
language, which is interpreted by Framsticks program and executed.

This script defines behavior of the Framsticks system in a few associated areas:

« Creation of objects in the world. The script defines where, when and how much of what objects will
be created. An object is an evolved organism, food particle, or any other element of the world
designed by a researcher. Thus, depending on some specific script, food or obstacles might appear,
move and disappear, their location might depend on where creatures are, etc.

» Objects interactions. Object collision/contact is an event, which may cause some action defined by tt
script author. For example, contact may mean energy ingestion, pushing each other, destruction, or
reproduction.

« Evolution. A steady-state (one-at-a-time) selection model, where a single genotype is inserted into a
gene pool at a time, can be used. But a standard (i.e. generational replacement) evolutionary algoritl
approach is also possible (a new gene pool replaces the whole old gene pool). Another possibility is
tournament competition for all pairs of genotypes. In general, the script can define many gene pools
and many populations, and perform independent evolutions under different conditions.

 Evaluation criteria are flexible, and do not have to be as simple as the performances supplied by the
simulator (but they will have to be based somehow on performances). For example, fithess might
depend on time or energy required to fulfill some task, or degree of success (distance from target etc

So one can use Framsticks for simulation of various ecosystems, with very diverse laws. This system is ver
versatile! The script is built from "procedures" assigned to system events. Currently there are the following
events:

» onExpDefLoad occurs after experiment definition was loaded. This procedure should prepare the
environment, create gene pools and populations.

» onExplnit occurs at the beginning of the experiment.

* onExpSave occurs on save experiment request.

e onExpLoad occurs on load experiment request. After this event, system state should resemble the
state before onExpSave.

» onStep occurs in each simulation step.

e onBorn occurs when a new organism is created in the world

* onKill occurs when a creature is removed from the world

 on[X]Collision occurs when an object of group [X] has touched some other object.

Thus a researcher may define the behavior of the whole system by implementing appropriate actions within
these events. A single script (experiment definition) may use parameters, so it usually allows to perform a
whole bunch (class) of diversified experiments.

19.1 lllustrative example (standard experiment definition)

The file "standard.expdef" contains the full source for the script used to optimize creatures on a steady-state
basis, with fitness defined as a weighted sum of their performances (see parameters description). This scrip
quite versatile and complex. Below its general idea is explained, with simplified actions assigned to system
events:

19 What is an experiment definition, and how to create your own expdef 77

onExpDefLoad()

« create single gene pool "Genotypes"
* create two populations "Creatures" and "Food"

onExplnit()

« empty all gene pools and populations
« place the beginning genotype in "Genotypes"

onStep()
« if too little food: create new object in "Food"
« if too few organisms: select a parent from "Genotypes"; mutate, crossover, or copy it. From the
resulting genotype create an individual in "Creatures”

onBorn()

* move new object into a randomly chosen place in the world
* set starting energy accordin