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Abstract

Fitness diversity is an idea in the field of evolutionary algorithms, which calls for supporting
the evolution of solutions at all fitness levels simultaneously. In some cases, this idea may even
extend to cultivating the worst solutions. While this may seem counterintuitive, fitness diver-
sity has shown its promise in algorithms such as Hierarchical Fair Competition and Convection
Selection. Although these algorithms share many similarities, the role fitness diversity serves in
each of them is different. In Hierarchical Fair Competition, fitness diversity facilitates a constant
incorporation of novel genotypes into the solutions that are already good – a mechanism we dub
First Glances – and discovery of solutions through the exploration of neutral networks of different
fitness levels – which we name Late Bloomers. On the other hand, Convection Selection uses
fitness diversity techniques to give broken solutions time and shelter necessary to cross larger
valleys in the fitness landscape – a mechanism we call Second Chances. In this work, we compare
these two algorithms and their respective mechanisms over a range of numerical and 3D structure
design optimization problems. We analyze the extent to which their mechanisms are utilized,
and measure the impact of these mechanisms on finding good solutions.

1 Introduction

One thing can be used in several ways. For example, since mastering fire, people have used it to
prepare food, provide light, heat oneself up or destroy something. We use fire not just for the
sake of it, but as a tool that enables us to do other things. Similarly, in the world of evolutionary
computation, one of such tools is the idea of fitness diversity. And just like fire, it should not be
seen as a goal in itself, but rather as something that facilitates the inclusion of other beneficial
mechanisms in the process of optimization.

Fitness diversity challenges the idea of focusing only on the good solutions. Instead, fitness
diversity methods provide solutions with a chance to evolve and improve over time, no matter their
quality. Perhaps the earliest representatives of fitness diversity are Fitness Uniform Selection Scheme
(FUSS) [5, 6] and Fitness Uniform Deletion Scheme (FUDS) [11, 6]. In these algorithms, evolution
focuses on either reproducing the solutions from the underrepresented fitness ranges (FUSS), or
removing solutions from the overrepresented fitness ranges (FUDS). Another work which leads to
greater diversity in the quality of solutions is Age-Layered Population Structure (ALPS) [2]. ALPS
divides the population into layers based on their age, continuously filling the youngest subpopulation
with new random solutions. Since the fitness of solutions is expected to increase over time, this
method does also indirectly support simultaneous evolution on many fitness levels.

In this paper we want to focus on two other algorithms. First of them is Hierarchical Fair
Competition (HFC) [3, 4]. HFC works similarly to ALPS, however the population is not divided

*The final version of this paper appeared in GECCO (Genetic and Evolutionary Computation Conference) Pro-
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based on the age of solutions, but on their fitness. Migration of solutions is allowed only in one
direction: from worse to better subpopulations. This allows for continuous integration of novel
genetic material into solutions that are already good – a mechanism we decided to call First Glances.
Alternatively, even if the fresh genetic material does not manage to aid the optimization, the subpar
solutions are free to indefinitely float along the neutral networks [13] of varied fitness levels in the
fitness landscape, as they are shielded from the selective pressure which would otherwise be exerted
on them by better solutions. This may allow them to find better local optima, even after the best
solutions have become stuck in a subpar local optimum – therefore, they become Late Bloomers.

The other algorithm covered in this paper is Convection Selection (ConvSel) [9, 7]. Although
Convection Selection divides the population into subpopulations based on the fitness of the solutions
in a fashion similar to HFC, it allows for the migration of broken solutions from good to bad
subpopulations. This way, it facilitates fixing of these broken solutions and crossing larger valleys
in the fitness landscape – a mechanism we call Second Chances.

Although HFC and ConvSel use the mechanisms of First Glances, Second Chances and Late
Bloomers to evolve solutions over many generations, it does not necessarily mean that these mech-
anisms actually contribute towards finding the best solutions. If a mechanism does not contribute
towards finding good solutions – it may be beneficial to remove it, especially if maintaining it
adds some overhead to the computations. Therefore, it is important to identify all the mechanisms
present in the algorithm and measure their impact on the performance of the optimization process.
Understanding them better may lead to creating new, more efficient algorithms that are composed
of mechanisms that are proven to be beneficial for a given problem, or streamlining already existing
algorithms by removing the mechanisms that prove to be unnecessary.

GECCO 2023 witnessed the debut of “Analysing algorithmic behaviour of optimisation heuris-
tics” workshop. The workshop was met with a positive reception and with an anticipation of further
research analyzing the inner workings of optimization heuristics [1]. In the spirit of the workshop,
in this paper we set our eyes on the algorithmic behavior of HFC and ConvSel in order to find
a confirmation – or a rebuttal – of the specific fitness diversity mechanisms playing a role in the
process of finding good solutions. It is possible to measure a degree to which some mechanism is
utilized in the process of evolution. To do this, one must analyze the evolutionary history of the
best solution found during evolution. In this paper we introduce three mechanism-centric measures.
We contrast their values with the quality of solutions found by HFC and ConvSel for a set of nu-
merical benchmarks from CEC’17 and a set of evolutionary design tasks in order to determine the
importance of the considered mechanisms and their actual effect on the quality of solutions found
in evolution.

The structure of the paper is as follows. In Sect. 2 we describe the Hierarchical Fair Competition
and Convection Selection in more detail. In Sect. 3 we discuss three mechanisms behind fitness
diversity: First Glances, Second Chances and Late Bloomers. We also present the vector measures
used later in order to assess the degree to which these mechanisms are actually utilized by the
algorithms. In Sect. 4 we present the experimental setup. Sect. 5 shows the results of the experiments
and the analysis of the role First Glances, Second Chances and Late Bloomers play in the process
of finding good solutions. Finally, Sect. 6 contains a short discussion of the findings of this paper,
and our plans for future research.

2 Algorithms

2.1 Hierarchical Fair Competition

Hierarchical Fair Competition (HFC) [3, 4] is a multi-population evolutionary algorithm which uti-
lizes a hierarchical structure of the population, with M subpopulations (each containing S solutions)
being assigned mutually exclusive fitness ranges. The fitness value constituting the border between
two subpopulations can be seen as the “export threshold” of the worse subpopulation and – simul-
taneously – the “admission threshold” of the better one. The worst subpopulation has no admission
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threshold, and the best subpopulation has no export threshold.
Each subpopulation, with the exception of the worst one, has a buffer of candidate solutions

associated with it. The subpopulations evolve independently of each other between migrations,
which happen once every M · S · R evaluations, where R is a scaling parameter controlling the
frequency of migrations. During migration, solutions are moved from the admission buffers to their
respective subpopulations. In the implementation used in this paper, at most S

2 best solutions are
moved from the admission buffer to their respective subpopulation, filling empty slots and replacing
the worst solutions in that subpopulation. The empty slots in the worst subpopulation are filled
with new, randomly generated solutions. Admission buffers are emptied after each migration.

Solutions are moved from subpopulations to the admission buffers only if their fitness exceeds
the export threshold of their current subpopulation. Then, such a solution is moved to the admis-
sion buffer with the highest admission threshold lower than the fitness of that solution (assuming
maximization). In this paper, the synchronous version of HFC is used, where solutions are moved
to the admission buffers only right before a migration.

In the original specification of HFC, the fitness ranges associated with subpopulations have to
be assigned a priori. In this work, Adaptive Setting of Admission Thresholds (HFC-ADM) is used
instead [4]. In HFC-ADM, the export threshold of the worst subpopulation is fixed, and based on
the average fitness of randomly generated solutions (as measured in the calibration phase, before
the proper evolution starts). All the other thresholds are recalculated before each migration. In the
canonical version of HFC-ADM, the admission threshold of the best subpopulation is calculated as
fmax − σf , where fmax is the highest fitness in the population, and σf is the standard deviation of
fitness in the (full) population. All the other admission and export thresholds are then interpolated
linearly between the export threshold of the worst subpopulation and the admission threshold of
the best subpopulation. This ensures that each intermediate subpopulation covers the fitness range
of equal width. However, in this paper we set the width of the best subpopulation to be the same
as the width of all other subpopulations (with the exception of the worst subpopulation) to reduce
the differences between the implementation of HFC and ConvSel, and therefore allow for a more
fair comparison of their mechanisms (First Glances, Second Chances, and Late Bloomers).

2.2 Convection Selection

Just like HFC, Convection Selection (ConvSel) [9, 7] is a multi-population evolutionary algorithm
which utilizes a hierarchical structure of the population, with M subpopulations (each containing
S solutions) being assigned mutually exclusive fitness ranges. ConvSel is different from HFC in the
following:

1. In the “equal width” variant of ConvSel used in this paper, the width of all fitness ranges is
equal, with subpopulations covering the entire range of fitness values present in the population
right before the migration.

2. There are no admission buffers.

3. Solutions migrate both upwards and downwards according to their fitness.

4. Right before a migration, fitness ranges of the subpopulations are recalculated, and during a
migration, solutions are transferred to their appropriate subpopulations.

5. There is no source of entirely new, randomly generated solutions once the subpopulations have
been initialized.
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3 The Mechanisms Behind Fitness Diversity

3.1 Measuring the “First Glances” mechanism

First Glances is a mechanism unique to HFC. Its name refers to the ability of HFC to continuously
introduce new, randomly generated solutions over the entire evolutionary run, and to incorporate
their genetic material into older solutions. To see if this mechanism aids the optimization, we need
to verify if the ancestry of the best solution contains solutions introduced later in the evolution, or
if it consists mainly of the solutions present in the initial population.

To that end we assign a vector named ancestor birthtime to every solution in the population.
The length of the vector matches the number of epochs in the evolutionary run (with the n-th
element of the vector corresponding to the n-th epoch, where an epoch is understood as the time
between two migration events). Whenever a new solution is created randomly (be it at the start of
evolution or sometime later), we assign it a vector of all 0s, except for the element with an index
corresponding to the number of the current epoch, which is assigned the value of 1. When a new
solution is created by mutation, it inherits the value of ancestor birthtime from its parent. When a
new solution is created by crossover, the values of elements of its ancestor birthtime are set to the
average of the values of the corresponding elements of its parents’ vectors.

3.2 Measuring the “Second Chances” mechanism

3.2.1 Distribution of ancestors in the subpopulations

ConvSel lacks the mechanism of First Glances, as it does not introduce new, completely random
solutions to the population during evolution. Instead, it relies on the mechanism of Second Chances.
The name of Second Chances refers to the ability of ConvSel to allow broken solutions coming from
good subpopulations to be maintained and fixed over time in subpar subpopulations. This way,
ConvSel allows for crossing wide and deep valleys in the fitness landscape. To measure the degree
to which this mechanism is actually utilized by ConvSel, we need to check the distribution of
subpopulations occupied by the ancestors of the best solution. For this purpose we use a vector
measure called ancestor spop. The length of this vector matches the number of subpopulations in
the population, with the first element of the vector corresponding to the worst subpopulation, and
the last element – to the best subpopulation. At the very start of evolution, ancestor spop of each
solution is a vector with 0’s on all positions except for the first element which is set to 1. Whenever
a new solution is created by a mutation or a crossover, its value of ancestor spop is calculated
similarly to that of ancestor birthtime.

During each migration, values of ancestor spop are recalculated for all solutions in the population
according to the formula:

ancestor spop =
(c epoch− 1) · ancestor spop + prev spop vec

c epoch
,

where c epoch is the number of migrations performed so far, and prev spop vec is a vector of 0’s
with 1 in the position representing the subpopulation occupied by the solution before the migration.
This way, the elements of ancestor spop should reflect the fraction of the cumulative evolutionary
time the ancestors of a solution spent in specific subpopulations over the entire evolutionary process.

3.2.2 Vertical mobility of the ancestors

Although ancestor spop can tell us if the ancestors of the best solution spent a lot of time in low-
quality subpopulations, it cannot reliably detect if they regularly visited low-quality populations
for a short time. To cover this possible scenario of utilizing the Second Chances mechanism, we
define an additional vector measure – ancestor mobility. The length of this vector is equal to
number of populations·2+1. Each element of the vector corresponds to a specific size and direction
of jumps between the subpopulations taken by the ancestors of a solution during migrations. The
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first element of the vector corresponds to the migration from the best subpopulation to the worst one,
the middle element corresponds to a jump of size 0 (i.e., a solution not changing its subpopulation
during migration), and the last element – a jump from the worst subpopulation to the best one.
Initially, ancestor mobility is set to all 0’s except for the position corresponding to no movement,
which is set to 1. Whenever a new solution is created by a mutation or a crossover, its value of
ancestor mobility is calculated similarly to that of ancestor birthtime and ancestor spop.

During each migration, values of ancestor mobility are recalculated for all solutions in the pop-
ulation according to the formula:

ancestor mobility =
(c epoch− 1) · ancestor mobility + jump vec

c epoch
,

where c epoch is the number of migrations performed so far, and jump vec is a vector of 0’s with 1
in the position representing the size and direction of a jump between the subpopulations made by
this solution during the current migration.

3.3 Measuring the “Late Bloomers” mechanism

Ancestor spop can also be calculated for HFC, although in the context of this algorithm its in-
terpretation becomes slightly different. Since HFC does not allow for Second Chances, ancestors
occupying subpar subpopulations cannot be linked to fixing broken solutions. Instead, this measure
allows one to observe the presence of “Late Bloomers”, i.e., solutions that existed and drifted for a
long time at lower fitness levels, perhaps finding novel promising areas of the fitness landscape.

We do not expect Late Bloomers to be present in ConvSel, as the downward migration will
inevitably introduce fragments of good solutions to low-quality subpopulations, changing their role
in the search process. Similarly, the presence of “First Glances” might introduce novel genetic
material to low-quality subpopulations, so we can only confidently confirm the presence of Late
Bloomers in the absence of First Glances.

4 Methods

4.1 Mathematical benchmarks

Test functions used in this work are based on CEC 2017 Special Session and Competition on Single
Objective Real-Parameter Numerical Optimization [14]. All test functions are minimized and the
search range is [−100, 100]D, where D is the dimensionality of the problem. In this work, we use
D = 30. The experiments use the Python implementation of the functions [12]. For the experiments
we selected the following 19 functions: F1, F3–F10, and F21–F30, as defined in [12].

4.2 Evolutionary design benchmarks

In addition to numerical benchmarks, in this investigation we include two optimization problems
of a different nature. They concern evolutionary design, i.e., evolving 3D structures or agents. In
these problems, the search space is discrete-continuous, and due to a complex genotype-to-phenotype
mapping, the fitness landscape is highly rugged and chaotic. For these optimization problems we use
Framsticks simulation environment [8, 10] and an open-source Python interface that allows running
customized evolutionary algorithms.

Framsticks simulates and evolves three-dimensional designs controlled by recurrent neural net-
works and is available as a native application for all major operating systems. In the experiments, a
simple MechaStick physics engine is used to simulate elastic “sticks” – bodies are composed of points
with a mass that are connected with joints. Control systems of simulated agents are composed of
artificial neurons of various types, including sensors and effectors, that can be freely connected –
with recurrent and parallel connections allowed. In the experiments reported here, the following
neuron types are used: a sigmoid neuron, a neuron that always outputs a constant value of 1, two
kinds of effectors (rotation around two axes), and two kinds of sensors (tilt and touch).
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A body and a control system are described by a genotype that can undergo mutation, crossover,
and repair. There are many genetic encodings in Framsticks, each with its own dedicated genetic
operators. The genetic encoding used here is the default one, denoted as f1. This is a high-
level encoding that directly maps each gene into a single part of the body or control system. For
example, the “X” symbol creates a “stick” in the body, parentheses “(” and “)” make a branching
in the body so that tree-like structures can be represented, and commas “,” separate individual
branches. Additional symbols (genes) influence the length of sticks, the plane of branching, or
physical properties like the coefficient of friction. Neurons are encoded in square brackets, with
individual connections separated by commas. Each connection is described by the relative index
of the input neuron and the value of the connection weight. Mutation operators modify specific
aspects of the genotype – for example adding or removing an “X”, adding or removing a branching
“(. . . )”, adding or removing a neural connection, changing connection weight, etc. The crossover
operator exchanges two randomly selected substrings in parent genotypes. The simplest genotype
in f1 is X (a single “stick”). More complex examples are XX(X,X(X,X,,,)) and X[N,1:0.3](X,X

[N,−1:0.2,1:0.4][N,−2:0.8]).
The two optimization functions included in this investigation are vertical position of the center

of mass of a passive structure (neural network is disabled) and velocity on land (neural network is
coevolved along with the body). The functions are further denoted as “vertpos” and “velocity”,
respectively, and both functions are maximized.

4.3 Experimental setup

The goal of the experiments is not to find the best performing parameters for the considered al-
gorithms, nor is it to directly compare the quality of their results. The goal of the experiments is
to analyze the influence of the mechanisms used by HFC and ConvSel on the fitness of the best
solutions found during the evolutionary process. For this reason, the parameter values used in the
experiment were selected as the parameters that have shown good performance in the past, but
they have not been tuned specifically for the test functions used in this work. Due to the similarity
of the general structure of HFC and ConvSel, the same values of parameters were used for both
algorithms.

Solutions in the numerical experiments are represented by vectors of floating point numbers.
Mutation consists in adding a random vector, with value at each position drawn at random from
the normal distribution N (0, 0.2). If any element of the vector after mutation exceeds the allowed
range, this value is reflected back towards the allowed range. Crossover is performed as a weighted
average of two parent vectors with weights r and 1− r, where r is drawn on each mutation from the
uniform distribution U(0, 1).

Both HFC and ConvSel use a generational EA within their subpopulations, with each new sub-
population consisting of 80% mutated solutions, and the remaining 20% are crossed-over solutions.

The initial population for both algorithms is filled with randomly generated solutions. Genera-
tion of random solutions for both the initial population and the First Glances mechanism is done
in the same way. For numerical benchmarks, a random solution is a random vector drawn from the
uniform distribution over the allowed range in each dimension. For evolutionary design problems, a
random solution is created by sequentially mutating the simplest structure until it becomes complex
enough (the number of body parts ranges from 2 to 15, and the number of neurons – from 1 to 15).

The parameters of the algorithms used in the experiments are as follows: migration interval =
10, number of populations = 25, subpop size = 50, t size ∈ {2, 5}.

The total number of evolutionary runs for the mathematical benchmarks was 2 (algorithms) × 2
(tournament sizes) × 19 (number of benchmark functions) × 50 (independent repetitions) = 3 800.

The total number of evolutionary runs for the evolutionary design benchmarks was 2 (algorithms)
× 2 (tournament sizes) × 2 (number of benchmark functions) × 30 (independent repetitions) = 240.

Each run consisted of 300 generations and required 300 (generations) × 25 (number of popula-
tions) × 50 (size of each population) = 375 000 function evaluations.
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5 Results

5.1 Evaluating the “First Glances” mechanism

To evaluate the degree of utilization of First Glances mechanism in HFC, we analyze the values of
ancestor birthtime vectors taken from the best solutions found during evolution, averaged over mul-
tiple runs. The averaged values of the ancestor birthtime, as calculated for different optimization
problems, are shown in Fig. 1.

The heatmaps clearly show that the vast majority of the genetic material which ends up in the
final, best solution, originates from the initial population. It does not invalidate the mechanism
of First Glances, as the subsequent epochs will naturally introduce a far lower number of new
random solutions than was created initially. The second epoch is also the source of a decent amount
of genetic material, however for most problems, the role of First Glances in the following epochs
is diminished. Despite that, new random solutions still manage to sometimes influence the final
solution. This effect is, however, much more pronounced in the case of a lower selective pressure
(t size = 2, Fig. 1a) than higher selective pressure (t size = 5, Fig. 1b), where for most cases the
novel solutions introduced in the later epochs almost never influence the final solution.

Among the tested benchmarks, the behavior of a few stands out. Numerical functions F3 and
F10 utilize the mechanism of First Glances far more than the other functions. Function F3 (Shifted

(a) t size = 2

(b) t size = 5

Figure 1: The values of ancestor birthtime vectors of the best solutions found by the HFC algorithm,
averaged from independent evolutionary runs. Optimization problems shown in rows. The color scale
is logarithmic.
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and Rotated Zakharov Function) uses progressively more First Glances as the evolution progresses,
which can be explained by the fact that this function is fairly flat in the middle of the search range,
with just one local optimum, so additional First Glances are likely to introduce useful solutions, as
the basin of the global optimum is very wide and the convergence to the global optimum might be
slow. On the other hand, function F10 (Shifted and Rotated Schwefel’s Function) uses First Glances
less as the evolutionary time progresses, as it is full of deep local optima, so while initially First
Glances may aid in finding basins of better local optima, once the population starts to converge to
a specific local optimum, it becomes harder to find better solutions.

Evolutionary design benchmarks (with the exception of velocity for t size = 5) appear to utilize
First Glances more than most of the mathematical benchmarks.

Overall, while the mechanism of First Glances is used by HFC, for most problems its importance
quickly decreases after the first epochs. Similarly, its importance appears lower when the selective
pressure is higher – possibly because this makes it harder for new solutions to compete against other
solutions, which are already at least partially optimized.

5.2 Evaluating the “Second Chances” mechanism

5.2.1 Distribution of ancestors in the subpopulations

The heatmap for ancestor spop, created in a similar fashion as the one
for ancestor birthtime, is shown in Fig. 2.

For most mathematical benchmarks, the ancestors of the best solution tend to occupy the best
and the worst subpopulations, mostly avoiding the subpopulations of a middling quality. This could

(a) t size = 2

(b) t size = 5

Figure 2: The values of ancestor spop vectors of the best solutions found by the ConvSel algorithm,
averaged from independent evolutionary runs. Optimization problems shown in rows. The color
scale is logarithmic.
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suggest that ConvSel actually gives broken solutions Second Chances, although the low utilization
of the subpopulation of middling quality suggests that fixing the broken solutions in these problems
does not require incremental improvements, but rather just one or two lucky mutations. Again, the
behavior of a few mathematical benchmarks stands out. For F3 and F10, all subpopulations are
utilized to a similar degree. For F21, F29, and F30, all of which are functions composed of several
other, simpler functions, the worst subpopulations are utilized the most, with ancestors of the best
solutions found in F30 spending almost no time in the best subpopulation.

The behavior of ConvSel is visibly different for the tasks of evolutionary design. For both
of the tasks there is a general tendency of better subpopulations being utilized more, with the
worst subpopualtions being heavily underutilized. It may suggest that in the tasks of evolutionary
design, the fitness of broken solutions is closer to that of a parent solutions, unlike the mathematical
benchmarks where mutation can often change the quality of a solution to a very high degree. It may
also be related to the fact that for these tasks the population did not manage to converge before the
end of the run, so the data we see captures the phase in which it is still easy to improve the best
solutions.

For both mathematical and evolutionary design benchmarks, increased selective pressure (Fig. 2b)
causes the middling subpopulations to be utilized more.

5.2.2 Vertical mobility of the ancestors

The averaged values of ancestor mobility vectors are shown in Fig. 3. There is a clear inverse
relationship between the size of a jump between subpopulations and the frequency of its occurrence,
with the ancestors of the best solutions not changing their subpopulations during most migrations.
While big improvements almost never happen, and improvements are usually small and gradual, the
degree to which a solution might get broken is more varied, as indicated by steeper, yet longer tails
on the left side of Fig. 3.

(a) t size = 2

(b) t size = 5

Figure 3: The values of ancestor mobility vectors of the best solutions found by the ConvSel
algorithm, averaged from independent evolutionary runs. Optimization problems shown in rows.
The color scale is logarithmic.

9



Once more, mathematical benchmarks F3, F10, F21, F29 and F30 stand out. Their distribution
of sizes of a jump between subpopulations is fairly uniform, most likely indicating a very low range
of fitness values in the full population, or a very rugged fitness landscape.

Although the tails of ancestor mobility are long for the vertpos benchmark, this function has
the highest probability of the ancestors not changing the subpopulation during migrations, which
may again suggest that the population is still quickly improving within the best subpopulation.

In the presence of a stronger selective pressure (Fig. 3b), the values of ancestor mobility are
more spread out, which may indicate both a greater mobility of solutions and a smaller range of
fitness values in the full population, which pushes the fitness ranges of the subpopulations closer
together.

Overall, the results confirm that the mechanism of Second Chances is utilized by ConvSel. We
have found a proof of both high and low quality subpopulations being used by the ancestors of the
best solutions. We have also detected in the ancestry of the best solutions a presence of solutions
breaking and then being slowly fixed over time.

5.3 Evaluating the “Late Bloomers” mechanism

Figure 4 presents the values of ancestor spop vectors of the best solutions found by the HFC al-
gorithm in different optimization problems. Surprisingly, Fig. 4 reveals that most of the ancestors
come from low quality subpopulations, with very short time spent by them in the best subpopu-
lation. This might be explained by the structure of a population in HFC, which allows solutions
to move upwards, but not downwards. The solutions reaching the best subpopulation become,

(a) t size = 2

(b) t size = 5

Figure 4: The values of ancestor spop vectors of the best solutions found by the HFC algorithm,
averaged from independent evolutionary runs. Optimization problems shown in rows. The color
scale is logarithmic.
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therefore, trapped there, with the worst of them being regularly replaced by solutions rising from
the lower subpopulations. In effect, solutions in a specific subpopulation can only have ancestors
from subpopulations not better than that subpopulation, which eventually leads to the lower quality
subpopulations being overrepresented in the ancestry of solutions.

Increasing the selective pressure (t size = 5, Fig. 4b) causes the ancestors of the best solution
to spend more time in high quality subpopulations, making the distribution more even than it is for
a lower selective pressure (t size = 2, Fig. 4a). Intriguingly, it simultaneously appears to decrease
the time the ancestors of the best solution spent in the best subpopulation.

While in theory the best solutions could survive over longer periods of evolutionary time in the
best subpopulation, avoiding the Late Bloomers mechanism, Fig. 4 clearly shows that this is not
the case. A possible exception to that rule can be observed for the vertpos benchmark, behavior of
which might, however, be explained by the population not being yet converged. Compared to the
mechanism of First Glances, the mechanism of Late Bloomers seems to be more robust and utilized
more during evolution.

5.4 The relationship between the utilization of the mechanisms and the quality
of the solutions

To determine the degree to which different mechanisms were utilized by evolution, we introduce
several scalar measures based on the vector measures described in Sect. 3. Measures using suffix
cog (shorthand for “center of gravity”) are defined as a weighted sum of indices of a vector, with
the elements of the vector serving as weights, divided by the length of the vector. Measures using
suffix std are defined as the standard deviation of the values of the vector. We include the follow-
ing measures in our analysis: birthtime cog (for HFC), mobility std (for ConvSel), spop cog, and
spop std (for HFC and ConvSel).

We have analyzed the relationships between the utilization of different mechanisms and the fitness
of the best solutions for each combination of the fitness function and the size of the tournament.
To express these relationships quantitatively, we calculated Spearman’s rank correlation coefficients.
The decision to use Spearman’s correlation was dictated by the observation that the distributions
of fitness values and the utilization of mechanisms are not always normal – in some cases, clusters
and outliers were detected.
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F1 0.09 -0.04 -0.07 0.18 0.11 0.14
F3 0.21 -0.14 -0.34 -0.19 0.02 -0.12
F4 0.14 -0.15 -0.06 0.17 0.14 -0.06
F5 -0.06 -0.05 -0.02 -0.11 0.03 -0.21
F6 0.10 0.21 -0.18 -0.30 0.16 -0.20
F7 -0.01 -0.05 -0.05 0.01 -0.09 0.10
F8 -0.11 0.07 -0.05 -0.06 -0.04 -0.07
F9 0.17 0.05 -0.32 0.22 -0.04 0.12

F10 -0.14 0.06 -0.25 0.03 -0.03 -0.02
F21 0.16 0.00 -0.04 -0.72 -0.03 -0.36
F22 0.24 0.11 -0.41 0.20 0.09 0.15
F23 0.09 0.15 -0.14 0.16 0.01 0.09
F24 0.04 0.08 -0.05 -0.07 -0.56 0.25
F25 0.17 0.16 -0.27 0.04 0.31 -0.41
F26 0.08 -0.02 -0.14 -0.25 0.47 -0.45
F27 0.11 -0.05 -0.10 0.14 0.13 0.10
F28 0.14 -0.08 -0.06 0.23 0.16 -0.08
F29 0.14 0.01 -0.01 -0.29 0.25 -0.10
F30 -0.01 0.14 -0.04 0.06 0.09 0.01

velocity -0.17 0.10 0.07 0.11 0.26 -0.10
vertpos -0.10 0.13 -0.08 0.16 0.06 0.20

(a) t size = 2
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FG LB SC
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F1 0.16 0.16 -0.45 0.06 0.12 0.09
F3 0.07 0.01 -0.24 -0.42 -0.04 -0.52
F4 0.11 0.02 -0.23 0.20 0.05 0.27
F5 0.08 0.14 -0.15 0.17 -0.09 0.11
F6 0.26 0.27 -0.25 -0.14 0.23 -0.13
F7 0.06 0.07 -0.05 0.37 -0.01 0.04
F8 0.16 -0.01 -0.11 0.02 0.03 0.03
F9 0.21 0.14 -0.48 -0.14 -0.04 -0.03

F10 -0.23 0.07 0.02 0.31 0.34 0.32
F21 0.05 0.09 -0.03 -0.80 0.81 -0.71
F22 0.31 0.19 -0.22 0.03 0.00 0.04
F23 0.08 0.11 -0.26 0.69 0.62 0.45
F24 -0.13 -0.13 0.02 -0.08 0.01 -0.03
F25 0.16 -0.07 -0.03 0.06 0.28 -0.02
F26 0.23 -0.06 -0.28 0.05 0.19 -0.12
F27 -0.01 0.13 -0.19 -0.12 -0.10 -0.05
F28 0.17 0.14 -0.19 -0.36 0.13 -0.12
F29 0.06 0.12 -0.17 -0.22 0.29 -0.31
F30 0.13 0.04 -0.16 0.17 -0.23 -0.09

velocity 0.07 -0.08 0.16 0.36 0.34 0.31
vertpos 0.03 0.15 0.23 0.15 -0.01 0.22

(b) t size = 5

Table 1: Spearman correlation coefficients between the utilization of different mechanisms (FG –
First Glances, LB – Late Bloomers, SC – Second Chances) represented as a weighted sum of indices
(cog) or standard deviation (std) of values of vector measures, and fitness of the best solutions found
by the algorithms for different test functions. Statistically significant correlations (p = 0.05) are
shown in bold.

The values of the correlations are presented in Tables 1a and 1b. Statistically significant cor-
relations (p = 0.05) are shown in bold. The relationship between the value of a measure and the
fitness of a solution (to which we will refer as a “utility” of a measure) is problem-dependent, with
some of the test functions benefiting more from certain mechanisms than others.

First, we analyze the mechanisms of HFC: First Glances and Late Bloomers. For mathematical
benchmarks, there is a general – yet not unanimous – preference of utilization of the mechanism of
First Glances, as indicated by positive correlations with fitness for birthtime cog. This suggests that
the mechanism of First Glances aids evolution. For mathematical benchmarks, it appears overall
beneficial for solutions to utilize all subpopulations to a similar degree (as shown by the negative
utility of spop std), avoiding the overrepresentation of low-quality subpopulations, or even to focus
on the subpopulations of higher quality (as shown by the positive utility of spop cog). This suggests
that the mechanism of Late Bloomers may not always be beneficial, especially when the influx
of solutions from the low-quality subpopulations is too strong, which may disrupt the exploration
of neutral networks of higher fitness. This negative aspect of Late Bloomers could potentially be
mitigated by adding a mechanism of genotypic diversity into the subpopulations of HFC.

For the problems of evolutionary design, the utilities of First Glances and Late Bloomers often
do not match the trends seen for the mathematical benchmarks. However, for these problems, none
of the correlations related to HFC were statistically significant.

When it comes to ConvSel, the utility of the mechanism of Second Chances appears to be far
more problem-dependent that it is for First Glances and Late Bloomers. Statistically significant
correlations can be found in both directions. This suggests that while the absolute value of the
utilities is often quite high (for example for F21 or F23) – which means that the mechanism of
Second Chances plays a significant role in evolution – the exact role it plays depends on the problem
itself.
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The sign of utility for a mechanism changes the interpretation of the correlation. Values close to
zero indicate that the utilization of the mechanism did not noticeably influence the search process.
Just because a mechanism is utilized more when the final fitness is worse does not necessarily
mean that the mechanism is detrimental. Instead it may suggest that when it is hard to discover
good solutions during evolution, evolution relies more than usually on that mechanism in order to
overcome the issue. The positive correlation, on the other hand, should indicate that the mechanism
actively aided the search not by mitigating the losses, but rather by amplifying the gains.

In most cases, increased selective pressure heightens the role the mechanisms play, with the
utilities becoming more pronounced.

6 Summary

In this paper we took a closer look at the mechanisms present in two fitness diversity algorithms
– Hierarchical Fair Competition (HFC) and Convection Selection (ConvSel). We identified three
mechanisms enabled by supporting simultaneous evolution on several fitness levels: First Glances
(continuous introduction of novel solutions to the population), Second Chances (fixing broken so-
lutions which allows for crossing fitness valleys), and Late Bloomers (finding novel promising areas
in the fitness landscape by drifting along some specific fitness level). We also developed measures
which allow one to estimate the level of utilization of these mechanisms.

The main contribution of this paper is an in-depth exploration and analysis of different mecha-
nisms behind fitness diversity. Although the utilization of First Glances is relatively low – the vast
majority of the genetic material which ends up in the final, best solution, originates from the initial
population – this mechanism seems to generally benefit the quality of solutions found by HFC. On
the other hand, Late Bloomers, while utilized more due to the structure of the algorithm, may in
some cases allow low-quality subpopulations to impede the efforts of higher-quality subpopulations.
Although it is clear that the mechanism of Second Chances plays an important role in the behavior
of ConvSel, the exact way it aids optimization depends strongly on the problem itself.

While the findings of our experiments are already useful, we acknowledge the limited scope of the
research presented in this paper. The importance of different mechanisms will differ depending on the
parameter values of the algorithm, while in the experiments discussed above most parameters were
fixed – both these common to all evolutionary algorithms, and these specific to HFC and ConvSel.
Additionally, more focus should be put on exploring how the importance of different mechanisms
changes depending on the length of the evolutionary process. After the population converges, the
overall behavior of the algorithm changes as well, which should be taken into consideration when
examining the utility of different mechanisms.

Despite these shortcomings – which we intend to tackle in further research – we believe that
this investigation constitutes an important first step towards a better understanding not only if the
fitness diversity algorithms work well, but also how and when they work. It shows the potential
hidden in analyzing the relations between the optimization problems and the mechanisms employed
by the optimization algorithms.

In the future, we also want to compare the properties of optimization problems [15] with the util-
ity of different mechanisms, which should help one discover dependencies that will guide researchers
towards developing new algorithms dedicated for problems with specific characteristics.
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