
Fitness diversification in the service of fitness optimization:

a comparison study

Kamil Basiukajc Maciej Komosinski Konrad Miazga

Poznan University of Technology
Institute of Computing Science

Poznan, Poland

maciej.komosinski@cs.put.poznan.pl

Abstract

Blindly chasing after fitness is not the best strategy for optimization of hard problems, as it
usually leads to premature convergence and getting stuck in low-quality local optima. Several
techniques such as niching or quality–diversity algorithms have been established that aim to
alleviate the selective pressure present in evolutionary algorithms and to allow for greater explo-
ration. Yet another group of methods which can be used for that purpose are fitness diversity
methods. In this work we compare the standard single-population evolution against three fit-
ness diversity methods: fitness uniform selection scheme (FUSS), fitness uniform deletion scheme
(FUDS), and convection selection (ConvSel). We compare these methods on both mathematical
and evolutionary design benchmarks over multiple parametrizations. We find that given the same
computation time, fitness diversity methods regularly surpass the performance of the standard
single-population evolutionary algorithm.

Keywords: evolutionary algorithms, fitness diversity, fitness uniform selection scheme, fitness uni-
form deletion scheme, convection selection

1 Introduction

Despite their versatility, evolutionary algorithms (EAs) [18] are – in their most basic form – often not
powerful enough to find satisfying solutions in notoriously challenging domains such as evolutionary
design [1, 9, 4]. In order to overcome their limitations, EAs often employ mechanisms such as niching
or fitness sharing [16] which help the algorithm preserve diversity of solutions and avoid premature
convergence to an unsatisfying local optimum. While not necessarily developed with that purpose
in mind, quality–diversity algorithms [15] are in many cases also a great tool for solving difficult,
multimodal, sparse and non-convex problems [2, 10].

Fitness diversity algorithms relieve the selective pressure present in EAs by searching for solu-
tions with different fitness values simultaneously. While usually these algorithms still contain some
form of selective pressure guiding the search towards better solutions, solutions do not compete with
all the other solutions, but only with these of similar quality. Population structure found in these
algorithms provides a scaffolding for simultaneous improvement of solutions of all fitness ranges.
This approach facilitates crossing of fitness valleys and continual discovery of new local optima.
The general philosophy of fitness diversity algorithms draws from many social structures found both
in human cultures and ecological systems [5].

There are several algorithms which could be classified as fitness diversity algorithms, such as
fitness uniform selection scheme (FUSS) [7, 8], fitness uniform deletion scheme (FUDS) [14, 8],

The final version of this paper appeared in Genetic and Evolutionary Computation Conference Companion
(GECCO ’22), Boston, USA, pp. 471–474, 2022. http://dx.doi.org/10.1145/3520304.3528949

1

http://dx.doi.org/10.1145/3520304.3528949

convection selection (ConvSel) [13, 11], and hierarchical fair competition (HFC) [5, 6]. So far,
however, there are no papers providing a thorough comparison of fitness-diversity algorithms. As
the first step towards creating such a comparison, in this work we focus on three of these methods:
FUSS, FUDS and ConvSel. We compare the performance of these techniques against the standard
single-population EA with tournament selection. As a testbed for this comparison we have selected
three mathematical benchmarks and one evolutionary design problem of optimizing simulated three-
dimensional agents to move fast in a flat environment.

2 Algorithms

Although they achieve their goal by different means, all the fitness diversity algorithms support
evolution of solutions at all fitness levels. Because of this, they concentrate less on best solutions,
which may lead to subpar performance on easier problems. On the other hand, they are an especially
good fit for difficult, deceptive problems which may require traversing fitness valleys and continuously
discovering new solution without converging to a single local optimum.

2.1 Fitness uniform selection scheme (FUSS)

Fitness uniform selection scheme (FUSS) [7, 8] abandons any direct mechanism of pressure to select
more fit solutions. Instead, it draws a value from a uniform distribution U(fmin, fmax) where fmin

and fmax are respectively the lowest and the highest fitness present in a current population, and
then returns a solution the fitness of which is the closest to that value.

In a case where solutions of some specific fitness value are difficult to find due to their rarity,
FUSS will sample the already found solution of a similar fitness more often. This way, even though
there is no implicit selective pressure towards better solutions, they will be sampled more often
assuming that better quality solutions are harder to find than low quality solutions, which is the
case for most optimization problems [8].

2.2 Fitness uniform deletion scheme (FUDS)

While the fitness uniform deletion scheme (FUDS) [14, 8] aims to equalize the density of solutions
of different fitness values similarly to FUSS, it does so not through selection, but rather through
deletion. First, it divides the range of possible fitness values into a number of subintervals of equal
length. Then, during evolution, every new solution is assigned to one of these subintervals. Whenever
a solution needs to be removed from a population, it is a random solution from the subinterval which
is currently the most occupied. This way, only the solutions from the more crowded fitness ranges
are removed, and so the number of solutions within each subinterval should tend to be roughly
equal. Due to FUDS being a deletion scheme, it still requires some selection scheme to be used.

2.3 Convection Selection (ConvSel)

Convection selection [13, 11] is a method of selecting solutions to new subpopulations in an island-
model algorithm [17]. It is a multi-population technique, where each subpopulation is assigned
solutions from a specific fitness range. In this paper, we use the EqualWidth policy [11] of the
fitness range assignment, which divides the population into M subpopulations, each of which is
assigned a disjunctive fitness range of equal width, i.e., the i-th population is assigned the range(
fmin + (i− 1) · fmax−fmin

M , fmin + i · fmax−fmin

M

]
. fmin and fmax are extreme fitness values in the

current population, and these values are included in the lowest/highest range. EveryN ·R evaluations
(where N is the size of the full population, and R is a scaling parameter) solutions migrate: all the
subpopulations merge, the ranges of subpopulations are recalculated according to the fitness of
the best and the worst solution in the population, and solutions are redistributed to their new
subpopulations. The subpopulations can be evolved sequentially or in parallel. Although right after

2

the division the sizes of subpopulations may differ, in the following generations ConvSel aims to
keep the sizes of all subpopulations equal to their target size. Between migrations of solutions, all
the subpopulations undergo a standard evolution, where any selection scheme can be used.

The name of convection selection comes from a convection-like effect that is visible in solutions
processed by this algorithm across subpopulations, where solutions of all fitness levels can improve
over time, no matter if they are historically underperforming or they were only recently broken by
an unfortunate mutation. This mechanism of “fixing” broken solutions can help evolution cross
fitness valleys and find new, better local optima.

3 Experiments

In the experiments, four algorithms were compared: a single population standard EA (StdEA), an
EA with the fitness uniform selection scheme (FUSS), an EA with the fitness uniform deletion
scheme (FUDS) and a multi-population EA with convection selection (ConvSel). All algorithms
used steady-state evolution with a tournament selection (except for FUSS) and a random deletion
(except for FUDS and FUSS, with FUSS using FUDS as the deletion scheme [8]).

3.1 Experimental setup

Parameter name

St
dE

A

F
U
SS

F
U
D
S

C
on
vS
el

Values

population size ✓ ✓ ✓ ✓ [100, 200, 500]
tournament size ✓ ✓ ✓ [3, 5, 7]
crossover prob. ✓ ✓ ✓ ✓ [0.5, 0.75]
mutation prob. ✓ ✓ ✓ ✓ [0.25, 0.5]

M ✓ [5, 10]
R ✓ [10, 25]

α (math only) ✓ ✓ ✓ ✓ [0.2, 0.4]

Table 1: The values of parameters used in the experiments. For each parameter, the methods using
it are marked. Parameter α was used only in mathematical benchmarks.

FUDS requires an estimation of upper and lower bounds of the obtainable fitness values. For the
mathematical benchmark functions, their theoretical maximum and minimum values were known
in advance. For the problem of velocity optimization, these bounds were determined based on the
results of the experiments involving the remaining methods.

For every combination of the algorithm, its parameter values (Table 1) and the fitness function,
30 (for the mathematical benchmarks) or 10 (for evolutionary design) independent evolutionary
runs were conducted. Then, for every combination of the parameters, the mean and the standard
deviation were calculated over all the runs. To ensure a fair, parameter-agnostic comparison of the
methods, at each moment during evolution, only the parametrizations yielding the best average
results at that moment were compared between the algorithms. The evolutionary runs were ter-
minated after evaluating 5 · 104 solutions in the case of mathematical benchmarks, or after 7 · 105
solutions for the evolutionary design problem.

3.2 Mathematical fitness functions

The minimization problems used were Drop-wave function (Dwf), Schaffer function N. 2 (SchfN.2),
and Schaffer function N. 4 (SchfN.4).

The solutions in the mathematical benchmarks are represented as vectors of real numbers, with
the initial populations starting with random solutions drawn uniformly from the ranges of variables
pre-specified for each benchmark separately.

3

#0 - @#1 - *

#2 - T

#3 - G #4 - |

#5 - |

#4 - |

1 x

signal: 0.543

#5 - |

1 x

signal: -0.00629

Figure 1: An example of a jumping agent encoded by the genotype LRX[@, 1:8.594]

Q(LLLLRcLRcX[*][T]LLqfX[G] [|, p:0.902, -1:12.765]FX[|, -3:0.934], X). This sample
agent was evolved to maximize velocity with a small penalty for the length of the genotype to
minimize redundancy.

Gaussian mutation was used with a standard deviation set for every variable as a fraction (1%)
of its allowed range. The crossover operator used was implemented in the DEAP library [3] as the
cxBlend() function. The α parameter defines the extent to which new values of variables can be
drawn on both sides of the values of parents, with α > 0 allowing for sampling new values beyond
the range of the parent values.

3.3 Evolutionary design fitness function

To test and compare the performance of fitness diversification techniques on a more diverse set of
fitness functions, apart from continuous mathematical benchmarks we also included an optimization
problem of a different nature: an evolutionary design task. In this case, the optimization concerned
three-dimensional structures equipped with sensors, actuators and a neural network. The goal was
to optimize agents that move as fast as possible in a simulated, flat environment. The agents were
built of elastic rods and their structure was encoded by a string of symbols. This optimization
problem is very hard as it includes both a combinatorial component (discrete parts of the body)
and a continuous component (weights in the neural network and neuron properties). Both physical
structure and its control system are highly interdependent, and even when treated independently,
each of these components is responsible for multiple local optima in the fitness landscape.

The sequence of symbols in the genotype encoded both the body and the neural network ac-
cording to the f1 genetic encoding in the Framsticks simulator (http://www.framsticks.com/a/
al_genotype). Each neuron, sensor, and effector was encoded separately as a substring in square
brackets. An example of an agent in simulation along with its genotype is shown in Fig. 1.

Mutation changed individual aspects of the genotype. The mutation operator was designed to
be neutral, i.e. to avoid introducing biases; probabilities of adding and removing a given element
were equal. Two-point crossing over was used, but while the cut points in the first parent were
chosen randomly (avoiding cutting inside neuron descriptions), in the second parent the cut points
were chosen proportionally, so if similar parents were crossed over, their corresponding parts would
be exchanged during crossover. In a specific case where identical parents were crossed over, this
operation would not introduce any changes.

To estimate the velocity of an agent (i.e., fitness), the agent was simulated for 10 000 simulation
steps. However, before this period, a stabilization phase occurred where the agent was simulated
until the displacement of its center of gravity was lower than 0.01 during consecutive 100 simulation

4

http://www.framsticks.com/a/al_genotype
http://www.framsticks.com/a/al_genotype

Dwf SchfN.2 SchfN.4

Method Mean Std Mean Std Mean Std

StdEA −0.9889 0.011 0.0000 0.000 0.2927 0.000

FUSS −0.9920 0.013 0.0019 0.000 0.2944 0.000

FUDS −0.9986 0.001 0.0000 0.000 0.2926 0.000

ConvSel −0.9991 0.003 0.0000 0.000 0.2926 0.000

Min −1.0000 n/a 0.0000 n/a 0.2926 n/a

Table 2: Comparison of best average values obtained by fitness diversity methods. The last row
contains the global minimum of each function.

steps. This phase was introduced to avoid initial, passive movements of the body of an agent
influencing their fitness.

The simulation and genetic operations were performed by the Framsticks engine [12] which was
available as a native C++ Linux library (*.so file). The engine was controlled by python scripts
responsible for evolution and fitness diversification techniques (http://www.framsticks.com/trac/
framsticks/browser/framspy).

4 Results

4.1 Mathematical benchmarks

The results of the algorithms for mathematical benchmarks are summarized in Table 2. All the
methods were able to find solutions with fitness close to the optimal values. Given the parameter
grid specified in Table 1, ConvSel and FUDS were found to be significantly better than standard
EA (p < 0.0001) and FUSS (p < 0.01) on Dwf problem. For SchfN.2 all algorithms were shown to
be significantly better than FUSS (p < 0.0001), and for the SchfN.4, both ConvSel (p < 0.01) and
FUDS (p < 0.001) were superior to FUSS. Out of all the compared methods, FUSS consistently
performed the worst, which is likely to be related to its lack of a direct selective pressure, and
therefore its inability to find the exact optimum. The traditional approach (StdEA) was the second
worst, with two methods (FUDS and ConvSel) outperforming it even on the simple mathematical
benchmarks that were considered here.

4.2 Evolutionary design

The results for the evolutionary design problem of evolving fast creatures are shown in Table 3.
All tested fitness diversity methods managed to find better solutions than the traditional approach
(StdEA), with FUSS and ConvSel exceptionally outperforming the other methods. While FUSS
was unable to pinpoint the exact global optimum in low-dimensional mathematical benchmarks,
convection selection performs well for both types of tasks, which proves the versatility of this algo-
rithm. However, ConvSel has the highest number of parameters, which may need to be tuned for the
problem at hand. Additionally, in this evolutionary design benchmark, the results of ConvSel have
the highest standard deviation of all the methods (across repetitions within the best parametriza-
tion). Unfortunately, given only 10 runs per parametrization, there were no statistically significant
differences between the algorithms.

StdEA FUSS FUDS ConvSel

Mean Std Mean Std Mean Std Mean Std

0.0143 0.0147 0.0219 0.0141 0.0177 0.009 0.0216 0.0198

Table 3: Comparison of best average values obtained by fitness diversity methods for agent velocity
maximization problem.

5

http://www.framsticks.com/trac/framsticks/browser/framspy
http://www.framsticks.com/trac/framsticks/browser/framspy

Figure 2: Comparison of the performance of fitness diversity methods on the agent velocity maxi-
mization problem. Each series shows the highest average fitness value obtainable for an algorithm
for all of the tested sets of parameter values. For clarity, the band around each series represents one
twentieth of the standard deviation.

Fig. 2 shows the best average fitness values obtained by each method within the tested parameter
grid, independently at each step of the evolutionary run. The band around each series represents
one twentieth of standard deviation. The traditional approach (StdEA) improves mainly through
short bursts of rapid improvements, while fitness diversity algorithms show continuous improvement
throughout the evolution. FUDS quickly ends the initial phase of quick improvement and sets
then on a steady pace of improvement comparable with the other fitness diversity methods, which
continues until the termination of the algorithm. The performance of FUSS and ConvSel is very
similar, with both algorithms finding new better solutions at a steady rate.

5 Summary and future work

In this paper we have compared the performance of three fitness diversity methods: fitness uni-
form selection scheme (FUSS), fitness uniform deletion scheme (FUDS), and convection selection
(ConvSel). We have shown that for a difficult problem of evolutionary design, all tested fitness
diversity methods outperform single-population steady-state EA with tournament selection. Si-
multaneously, some of the fitness diversity methods such as FUDS and ConvSel can compete with
traditional approaches. These results encourage further examination of the fitness diversity methods
– they may prove to be a good, but still poorly explored way of developing better-performing and
efficient EAs.

In the future we want to extend our comparison to include more algorithms, such as hierar-
chical fair competition (HFC) and age-layered population structure (ALPS). We would also like to
extend our testbed to include more fitness functions of different types, including more demanding
mathematical benchmarks, a larger number of evolutionary design problems, genetic programming
problems, and combinatorial problems such as the traveling salesman problem or the set-covering
problem. Results of a bigger comparison may reveal the most important mechanisms present in
fitness diversity methods, and the main characteristics of the problems for which these algorithms
are best suited.

6

Acknowledgments

The research of KB and KM was supported by the Faculty of Computing, Poznan University of
Technology, through the funds provided by the Ministry of Science and Higher Education, grant
no. 0311/SBAD/0713. The research of MK was supported by the Polish Ministry of Education and
Science, grant no. 0311/SBAD/0726.

References

[1] Peter J. Bentley. Evolutionary Design by Computers. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1999.

[2] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret.
Quality-Diversity Optimization: a novel branch of stochastic optimization. In Black Box Opti-
mization, Machine Learning, and No-Free Lunch Theorems, pages 109–135. Springer, 2021.

[3] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and
Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal of Machine Learning
Research, 13:2171–2175, jul 2012.

[4] Philip F. Hingston, Luigi C. Barone, and Zbigniew Michalewicz. Design by evolution: advances
in evolutionary design. Springer, 2008.

[5] Jian Jun Hu and Erik D. Goodman. The hierarchical fair competition (HFC) model for parallel
evolutionary algorithms. In Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02, volume 1, pages 49–54. IEEE, 2002.

[6] Jianjun Hu, Erik Goodman, Kisung Seo, Zhun Fan, and Rondal Rosenberg. The hierarchi-
cal fair competition (HFC) framework for sustainable evolutionary algorithms. Evolutionary
Computation, 13(2):241–277, 2005.

[7] Marcus Hutter. Fitness uniform selection to preserve genetic diversity. In Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02, volume 1, pages 783–788. IEEE, 2002.

[8] Marcus Hutter and Shane Legg. Fitness uniform optimization. IEEE Transactions on Evolu-
tionary Computation, 10(5):568–589, 2006.

[9] Rafal Kicinger, Tomasz Arciszewski, and Kenneth De Jong. Evolutionary computation and
structural design: A survey of the state-of-the-art. Computers & Structures, 83(23):1943–1978,
2005.

[10] Adam Klejda, Maciej Komosinski, and Agnieszka Mensfelt. Diversification techniques and
distance measures in evolutionary design of 3D structures. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’22), July 9–13, 2022, Boston, USA. ACM, 2022.
doi:10.1145/3520304.3528948.

[11] Maciej Komosinski and Konrad Miazga. Tournament-based convection selection in evolutionary
algorithms. PPAM 2017 proceedings, Lecture Notes in Computer Science, 10778:466–475, 2018.
doi:10.1007/978-3-319-78054-2_44.

[12] Maciej Komosinski and Szymon Ulatowski. Framsticks: Creating and understanding com-
plexity of life. In Maciej Komosinski and Andrew Adamatzky, editors, Artificial Life Mod-
els in Software, chapter 5, pages 107–148. Springer, London, 2nd edition, 2009. URL:
http://www.springer.com/978-1-84882-284-9.

7

https://doi.org/10.1145/3520304.3528948
https://doi.org/10.1007/978-3-319-78054-2_44
http://www.springer.com/978-1-84882-284-9

[13] Maciej Komosinski and Szymon Ulatowski. Multithreaded computing in evolutionary design
and in artificial life simulations. The Journal of Supercomputing, 73(5):2214–2228, 2017. doi:
10.1007/s11227-016-1923-4.

[14] Shane Legg and Marcus Hutter. Fitness uniform deletion: A simple way to preserve diversity.
In Proceedings of the 7th annual conference on Genetic and evolutionary computation, pages
1271–1278, 2005.

[15] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

[16] Bruno Sareni and Laurent Krahenbuhl. Fitness sharing and niching methods revisited. IEEE
transactions on Evolutionary Computation, 2(3):97–106, 1998.

[17] Zbigniew Skolicki. An analysis of island models in evolutionary computation. In Proceedings
of the 7th annual workshop on Genetic and evolutionary computation, pages 386–389, 2005.

[18] Xinjie Yu and Mitsuo Gen. Introduction to evolutionary algorithms. Springer Science & Business
Media, 2010.

8

https://doi.org/10.1007/s11227-016-1923-4
https://doi.org/10.1007/s11227-016-1923-4

	Introduction
	Algorithms
	Fitness uniform selection scheme (FUSS)
	Fitness uniform deletion scheme (FUDS)
	Convection Selection (ConvSel)

	Experiments
	Experimental setup
	Mathematical fitness functions
	Evolutionary design fitness function

	Results
	Mathematical benchmarks
	Evolutionary design

	Summary and future work

