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Abstract

This paper describes our work on a fuzzy controller for virtual robots in the Framsticks system.
The fuzzy system controller processes signals from sensors to actuators. Its parameters are tuned
during evolution by genetic operators to achieve success in simple optimization tasks. The
representation for the fuzzy control system, evolutionary operators and an evaluation function are
defined. The best evolved control systems are verified in agents within the Framsticks simulator
[Komasinski and Ulatowski, 1997a], and these results are presented.

1. Introduction

Many successful implementations have exposed the
power of fuzzy control. Nowadays, video cameras,
air-conditions systems, car ABS, subway and many
others systems are controlled by microcomputers
using fuzzy logic.

The aim of this work was to verify the use of
fuzzy logic controllers for controlling the behavior
of virtual creatures in a specific 3D simulation and
optimization environment — the Framsticks system
[Komosinski and Ulatowski, 19973].

In this approach fuzzy controllers are built
during evolutionary optimization. The following
sections introduce the Framsticks simulator,
describe the representation of a fuzzy control
system, evolutionary operators and an evaluation
function. Then, two experiments with simple
Framsticks agents (“walker” and “stand-up”) are
presented and their results are summarized.

2. Framsticks virtual world

Framsticks [Komosinski and Ulatowski, 19974] isa
system for simulation and optimization of three-
dimensional agent sructures and their control
systems. It alows users to perform pre-defined
experiments, but the system is open and allows
creating user-defined experiment setups, fitness
functions, and neurons. A scripting language is
provided for these purposes. Therefore Framsticks
is suitable for testing various research hypotheses
where fast 3D simulation and evolutionary
optimization isrequired.

The physical structure of Framsticks agentsis
made of parts (material points) and joints. The
control system is made of neurons (including
sensors and actuators) and their connections. In this
work, only a subset of system features was used:
physical structure was fixed (not optimized), and
there was a homogeneous, fuzzy control system (ie.
it was not composed of many heterogeneous
neurons with changing topology).

Framsticks  supports  multiple  genetic
representations and operators. These
representations range from simple and direct
descriptions of agents to the ones encoding
developmental process in genotypes [KomosinsKi
and Rotaru-Varga, 2001]. In this work, the direct
encoding was used, and special genetic operators
were designed to provide mutation and crossing
over of afuzzy control system.

The Framsticks software is available for Linux
and MS Windows, both as Graphical User Interface
programs and as command line programs. Parts of
the C++ source, mainly those concerning genetics
(including the work described in this paper) arealso
available within the GDK (Genotype Developer
Kit) [Komosinski and Ulatowski, 1997b].

3. Fuzzy controlled virtual
creatures

Fuzzy systems applied in thiswork are based on the
Mamdani model, i.e. both premises and conclusions
of fuzzy rules are described by fuzzy variables. A
very valuable feature of a fuzzy system is that one
can infer a new conclusion from a new hypothesis.
A fuzzy system isthus akind of afunction of many



variables, where input signals are first fuzzily
evaluated by particular fuzzy rules, the results of
firing rules are then aggregated, and the resulting
fuzzy set is defuzzified [Michalewicz 2000; Ross
1995; Yager and Filev 1994].

The classical Mamdani model is composed of
multiple input and single output variables. A
multiple input — multiple output (MIMO) fuzzy
system is a kind of a fuzzy rule-based system, in
which premise and conclusion parts are compound
of many inputs and outputs. It is a set of smilar
fuzzy systems with different conclusions.

In our approach, fuzzy sets are represented in a
trapezoidal form, each fuzzy set is defined by four
real numbers within the domain of [-1,1]. Figure 1
presents an example of fuzzy sets, which describe
Framsticks' touch sensor.
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Figure 1. Example of fuzzy sets for a touch sensor

For example, let us consider a fuzzy rule-based
system with two inputs (x0, x1), two outputs (Y0,
yl), two rules (RO, R1) and five fuzzy sets
(FO .. F4):

FO={-0.35; 0.05; 0.4; 0.65}
F1={-1; -0.8; -0.8; -0.35}
F2={0.2; 0.5; 0.7; 0.8}
F3={-0.65; -0.5; -0.3; 0.1}
F4={0.4; 1, 1; 1}

RO: IF xO0 is FO AND x1 is F1
THEN yO is F5 AND y1 is F2

Rl: IF xO0 is F2 AND x1 is F3
THEN yO is FO AND y1 is F1

The fuzzy system works as follows:

= thefuzzification function evaluates a degree of
membership of the input signal

= theinference uses the Mamdani implication

= the defuzzification function calculates the
center of weight of the resulting fuzzy set

These three operations are implemented in a
Framsticks neuron, named a Fuzzy neuron.

4. Fuzzy neuron in Framsticks

Fuzzy neuron is one of neurons used in Framsticks
to control behavior of agents. It is not a neuron in
the classca meaning of that word; the only
common thing is that the fuzzy neuron gets
information from the input and transforms it into
the output. Inside the neuron, there is no sigmoid

function, but a complete fuzzy rule-based system is
encoded.

Inputs and outputs of the fuzzy-system neuron
can be connected with any framstick neuron,
muscle or sensor. It is desirable for inputs to be
connected with sensors (like gyroscope, smell or
touch, which get information from the
environment) and for outputs to be connected with
muscles (bending or rotating muscles, which
control agent movement). An example of such use
is shown on Figure 2.
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Figure 2. Example of a fuzzy Framsticks brain

5. Evolutionary operators

In our experiments, the physical structure of each
agent is fixed during evolution. In another words,
the task of evolution is to find the best fuzzy rule-
based system (the best parameters of a fuzzy
neuron) for a single instance of the body. While
fuzzy neuron changes, the rest of an agent stays
intact, and thus the number of fuzzy neuron inputs
and outputs is congtant too. The only values that
evolve are fuzzy sets and rules.

5.1. Genetic encoding of the fuzzy
rule-based system

Framsticks fO genetic format [Komosinski and
Ulatowski, 1997a] encodes body and its control
system, which is afuzzy system neuron (see Figure
3 for an example). Specia genetic operators (hamed
fO-fuzzy) for the fuzzy system neuron are provided
to allow for its evolution.
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Figure 3. Example of the fO genotype. Bottom: the
three sections in the fuzzy neuron description



The first section defines how many fuzzy sets and
fuzzy rules are present in thefuzzy system (in
total). These are integer values. The second section
defines fuzzy sets, and thethird section — fuzzy
rules. A single fuzzy rule is defined by nonzero
integer values. They represent the number of inputs
in thepremise part, thefuzzy set used for
the fuzzification of the input, the number of outputs
in the conclusion part and thefuzzy set used for
the defuzzification of the output. Each fuzzy rule
may have a different number of premises and
conclusions.

5.2. Crossover algorithm

The crossing over used in this work is ahybrid of
two methods:

1. The operators cut and exchange the genetic
information based on a fixed number of cross-
over points (one-, two-, or more) [Fogel 2000;
Davis 1991].

2. Some information taken from the parents is
averaged.

The genera definition of this method is presented
in [Goldberg 1989; Michalewicz and Foge 2000].
In this paper, the length of the parent genotype parts
is averaged. Then individual genes are taken
randomly from both parents. Some genes are copied
from one parent without changes. A very similar
method is presented by Casillas [Casllas et al.
2000]. It is caled a partially complementary
method.

The information inherited from the parent
fuzzy systems are fuzzy sets and rules. Crossing
over operations are performed in such away that all
the fuzzy sets (from both parents) are copied, and
the identical ones are used only once. The way
fuzzy rules evolve is more complex, and for the
limited space of the paper only general information
is provided.

The number of the descendant’s fuzzy rules is
drawn according to the following formula:

rulesNr3=min{rulesNr1; rulesNr 2}

+ random(| rulesNrl-rulesNr2|+1)
where rulesNr is the number of rules for parents
(rulesNr1, rulesNr2) or a descendant (rulesNr3). So
the number of descendant rules is arandom value
in therange:

min{rulesNr1; rulesNr2} < rulesNr3

< max{rulesNr1; rulesNr 2}
The same procedures are used to draw the numbers
of inputs and outputs in the new fuzzy rule (using

the numbers of inputs and outputs in the parent
rules, respectively).

5.3. Mutation
The system uses many kinds of mutations.

=  New fuzzy set add creates a new fuzzy set with
random values. It is also necessary to add a
new fuzzy rule, which uses the newly created
fuzzy set (to avoid unused fuzzy sets).

= Removal of existing random fuzzy set.

=  New fuzzy rule add creates a rule with random
inputs and outputs number, and random fuzzy
sets numbers assigned to each input and output.

= Removal of existing fuzzy rule is possible when
thereis at least onerulein the system.

= Adding new input or output and Removing
existing input or output: rule number to modify
is selected randomly, then random input/output
is added/removed.

6. Experiments and results

6.1. The walker agent

Thewalker agent is constructed of four legs with
touch sensors at the end of each leg. Thelegs are
connected to therest of thebody by rotating
muscles, thus each leg can move. The agent’sbrain
consists of afuzzy neuron with four inputs (touch
sensors) and four outputs (rotation muscles).
Thefitness goal is the agent’s velocity, so the task
of the evolution is to find a fuzzy rule-based system
which enables thecreature to move as fast as
possible.

Theresults of theevolution are quite
interesting. Thewalker is moving by means of
jumping. Its hind legs rotate back and to the default
position periodically, and so do thefront legs, as
shown in Figure 4.

During the evolution, it appeared that the
information obtained from three touch receptorsis
enough to know the agent’s position — one sensor
signal is unnecessary. Thewalker agent turns
dightly left, as shown on Figure 4, because the
rules and the fuzzy sets are not tuned perfectly — it
is very possible that the system found a good local
optimum which is hard to leave. It is very difficult
to tune the fuzzy system manually. Every little
change in the fuzzy sets definition or in the fuzzy
rules causes changes in the agent behavior. This
affects signals taken from the inputs (touch
sensors), sotherules' premise part must be changed
too.

6.2. The Stand-up agent

This testing agent has a stable base, and is put into
the simulation environment upside-down. Two
upper arms are a bit longer, so when it is created, it
fals down. There are two long sticks, joined with a
muscle, which can bend in two dimensions, to make
it possible to get up. At four base sticks, there are
two gyroscopes (which make it possible to find out



agent’s vertical position) and two touch sensors (to
find out if its base touches the ground). There is
also a feedback from muscles, because it could be
helpful for the agent to know its muscle state —
whether it is bent or not and how much.
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Figure 4. The “walker” agent — jumps of the body
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Figure 5. Behavior of the “stand-up” agent

When the simulation starts, the body lies down on
the ground. The task of the rule-based system (with
five inputs and one output) is to force the body to
achieve the possibly talest height. The first
interesting evolution result was a rule-based system
that made the agent get up. There were different
genotypes, which behaved similarly. Some bent and
erected its arm in sequence, some stood ill by
making an angle with both arms. Sometimes they
stood stable quite straight — but with an arm bent, as
shown on Figure 5 B.

It was much more difficult to evolve rules that
would provide arms straightening, because of

gravity —when an agent tried to do it, falling down
was unavoidable.

Cyclic actions are presented on figure 5 A-F:
an agent gets up (A, B), maximaly bends its
muscle (C), and suddenly straightens it (D, E) to
provide better height, but then falls down (F, A).
For such behaviors, the fitness (average vertical
position of the agent center during the simulation
period) was about 0.26 (where the stick length is
equal to 1).

7. Conclusions

The work on implementation of a fuzzy system
control in the Framsticks environment was
successful. We designed special genetic operators
for such a control system and validated their
usefulness. The fitness of evolved behaviors was
comparable to those achieved with heterogeneous
neural network controllers.

There are many ways for further development
of the fuzzy neuron. Trapezium membership
function can be replaced with some other —
triangular, gauss etc. Different methods of
defuzzification procedure can be selected.

Interesting results could be achieved if the
number of inputs and outputs of the fuzzy neuron
could be changed, so that different bodies could be
evolved and crossed over. Such co-evolution of
both body and a fuzzy rule-based control system
may bring efficient solutions for various tasks.
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