EVOLUTIONARY DESIGN OF INTERPRETABLE Fuzzy CONTROLLERS*

Maciej HAPKE, Maciej KOMOSINSKI

Abstract. This paper presents an approach that allows to evolve fuzzy controllers
that can be expressed as fuzzy rules in human-readable form and interpreted. For
comparison, the evolution is also performed on simple neural controllers. The control
task considered here is a balancing problem, where a construct made of articulated
elastic elements is equipped with sensors and actuators. The goal of the construct
is to keep the top heavy part from touching the ground. Evolved controllers are
evaluated using computer simulation. Control systems process signals from tilt sensors
to actuators fixed in the construct. During evolution, fuzzy controllers (including
their fuzzy sets and rules) are reconfigured by genetic operators in order to maximize
fitness of the control. The article compares evolvability of neural and fuzzy controllers
and demonstrates how additional, comprehensible knowledge can be gained which
explains the work of the fuzzy controller. The representation for the fuzzy control
system, evolutionary operators, various evaluation functions, and the best evolved
control systems are presented. A sample evolved fuzzy control system is analyzed in
detail to explain its behavior.

Keywords: Fuzzy control, pendulum, evolution, optimization, simulation, inter-
pretable rules, neural networks

1 Introduction

Many successful implementations have exposed the power of fuzzy control. Nowadays,
video cameras, air-conditions systems, car ABS, subway and many others systems are
controlled by microcomputers using fuzzy logic. Every year the list of applications of
fuzzy logic control in various domains is becoming longer and longer [24].

Among many reasons of a growing number of applications, one should be empha-
sized here. Fuzzy logic allows for inclusion of expert knowledge in control systems.

*Maciej Hapke and Maciej Komosinski. Evolutionary design of interpretable fuzzy controllers.
Foundations of Computing and Decision Sciences, 33(4):351-367, 2008.

The knowledge gained from experienced process operator can be easily represented in
the form of fuzzy control rules where both premises and conclusions contain imprecise
linguistic variables. A fuzzy control system defined in this way, after necessary refine-
ment and tuning, is often good enough to substitute for a human. If the control system
built on expert knowledge is worse than human control, it can be then enhanced by
adding more fuzzy rules (e.g. rules discovered by learning systems). The knowledge
acquired from data and represented by fuzzy rules can also explain the behavior of
the system. This observation became a motivation for the research described in this
paper.

Many authors reported efficiency of evolutionary algorithms for the optimization
of fuzzy controllers [4, 9, 15, 23, 6, 7]. In these approaches, evolutionary algorithms
(EAs) were used mostly for automatic design of fuzzy controllers with predefined
structures, e.g. based on the standard MacVicar-Whelan [13] rule table. On the other
hand, EAs turned out to be efficient in fuzzy rule based system optimization, where
their task consists in tuning and/or learning fuzzy rules. While tuning is mainly con-
cerned with optimization of membership functions, learning constitutes an automated
design method for fuzzy rule sets, starting from scratch. There are various approaches
to learning rules described in the literature [14]. One of the most extended trends
in rule learning by EAs is the Pittsburgh approach [22] which is characterized by
representing an entire rule set as a single chromosome. In this approach, a popula-
tion consists of candidate fuzzy rule sets that are subject to the selection mechanism,
and crossover and mutation evolutionary operators. The conclusion coming from the
results reported in the literature is that the use of EA shortens design time, reduces
design costs and results in near-optimal control.

Motivated by these results, we have chosen a control task to determine the ability of
evolutionary processes to optimize a complete fuzzy control system, and additionally,
to describe it in a way that is understandable to a human. A 3D simulation and
optimization environment is used [11] to model both the physical structure and the
control system, and to optimize control in order to maximize their fitness function.
Since the control system is modeled as a fuzzy system (consisting of fuzzy control
rules), the acquired knowledge can be potentially understood by a human. The aim
of this work is therefore to employ evolutionary processes following the Pittsburgh
approach to optimize Mamdani-type fuzzy logic controllers compared to artificial
neural networks, and to use techniques to further explain the fuzzy system that was
evolved without human intervention. Consequently, the evolved fuzzy control is not
a “black box” and can be interpreted even though it was created automatically in
simulated evolution.

The following sections introduce the simulation environment, describe the repre-
sentation of a fuzzy control system, evolutionary operators and evaluation (fitness)
functions. Then, experiments with evolved control are presented and results are con-
cluded.

Part Joint

- po_sition_ - stiffness (linear)

- orientation - stiffness (angular)
- mass

- friction

Actuator
= strength

Figure 1: Elements of the physical structure of a simulated agent.

2 The simulation environment

For the experiments, we employ the Framsticks environment [11] which allows simu-
lating and optimizing three-dimensional agent structures and their control systems.
The software can be used to perform predefined experiments, but user-defined exper-
iment definitions, fitness functions, and neuron types are also supported. A scripting
language is provided for these purposes, so the simulator is suitable for testing var-
ious research hypotheses where fast 3D simulation and evolutionary optimization is
required.

The physical structure of an agent is made of parts (material points) and elastic
joints (see Fig. 1). The control system can be composed of many types of neurons,
sensors and actuators, and their weighted connections [1]. In this work, only a subset
of simulation features is used — the physical structure of agents is fixed (not optimized).

Framsticks supports multiple genetic representations and operators. These repre-
sentations range from simple and direct descriptions of agents to the ones encoding
developmental process in genotypes [10]. In this work, the direct encoding is em-
ployed, and special genetic operators are designed to provide mutation and crossing
over of a fuzzy control system.

3 Fuzzy control model

Fuzzy systems applied in this work are based on the Mamdani model, i.e. both
premises and conclusions of fuzzy rules are described by fuzzy variables [17]. A
valuable feature of a fuzzy system is that one can infer a new conclusion from a new
hypothesis. This allows the fuzzy system to be a kind of a function of many variables,
where input signals are first fuzzily evaluated by particular fuzzy rules, the results of
firing rules are then aggregated and the resulting fuzzy set is defuzzified [16, 21, 26].

The classical Mamdani model is composed of multiple input and single output
variables. A multiple input — multiple output (MIMO) fuzzy system is a kind of a
fuzzy rule-based system, in which premise and conclusion parts are compounded of
many inputs and outputs. Therefore it is a set of similar fuzzy systems with different
conclusions.

In our approach, fuzzy sets are represented in a trapezoidal form, each fuzzy set

A touching
degree
no touch slight normal strong very strong
1
0 1 1 Y Y 1 1 >

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Figure 2: Example of fuzzy sets for the touch sensor.

being defined by four real numbers within the normalized domain of [—1,1]. Fig. 2

presents an example of fuzzy sets, which correspond to the simulated touch sensor.
The example of a fuzzy rule-based system with two inputs (x0, x1), two outputs

(y0, y1), two rules (RO, R1) and five fuzzy sets (FO .. F4) can be described as follows:

F0={-0.35; 0.05; 0.4; 0.65}

F1={-1; -0.8; -0.8; -0.35}

F2={0.2; 0.5; 0.7; 0.8}

F3={-0.65; -0.5; -0.3; 0.1}

F4={0.4; 1; 1; 1}

RO: IF x0 is FO AND x1 is F1 THEN yO is F5 AND yl1 is F2
R1: IF x0 is F2 AND x1 is F3 THEN yO is FO AND y1 is F1

In the considered approach, the classical Mamdani model of the fuzzy system is
used. It is composed of three parts with the following functionality:

e the fuzzification function evaluates a degree of membership of the input signal,
e the inference procedure uses the Mamdani implication,

e the defuzzification function calculates the center of weight of the resulting fuzzy
set.

These three operations were implemented within the simulation environment.
They constitute a single control unit that gets information from inputs and trans-
forms it into outputs, using a fuzzy rule-based system. Inputs and outputs of this
unit can be connected with any other unit or neuron, actuator or sensor. It is desirable
for inputs to be connected with sensors (like gyroscope, touch, or smell, which acquire
information from the environment) and for outputs to be connected with actuators
(bending or rotating “muscles”, which control movement). An example of such use is
shown on Fig. 3.

inputs fuzzification inference defuzzification outputs

Bending
muscle
o0
Smell
receptor Rule #0 4’|>
ule -
o 051 i0=F0 & i1=F1 => Multi-channel output
00 = F5 & o1=F2
Output 0
Rotating
Rule #1 muscle
Gyroscope i0=F2 & i1=F3 => OUutPutl
il SH—b 00 = FO & 01=F1 ol

Figure 3: Example of a fuzzy unit within the control system.

4 Evolutionary algorithm

In our experiments, the physical structure of each agent is fixed during evolution.
In another words, the goal of evolution is to find the best control system for a single
instance of the body shape. If the control system is a neural network, then the network
topology and connection weights are evolved. If it is a fuzzy rule-based system, then
the fuzzy neuron parameters are evolved. While the fuzzy unit changes, the rest of an
agent stays intact, and thus the number of fuzzy unit inputs and outputs is constant
too. The only values that evolve are fuzzy sets and rules.

A steady-state evolutionary process was used for optimization [5]. It is different
from a popular generational process in that individuals are processed one by one.
Thus the steady-state evolution is performed in these steps:

e Choose the genetic operation: mutation or crossing over

— For mutation: select a genotype from the gene pool and mutate it

— For crossing over: select two genotypes and cross them over
e Build an agent from the resulting genotype, simulate and evaluate it
e Add the evaluated genotype to the gene pool

e If the gene pool size exceeds the maximum size, delete a genotype

A number of test runs were performed in order to choose the best parameters for
the evolutionary process. The final settings were as follows: the selection mechanism
was tournament, and the gene pool size was 400. Genotypes were deleted randomly.
Additionally, we introduced a random noise to the initial state of neural units to gain

n:d="Fuzzy:ns=4, nr=2,
fs=-0.1647;-0.1526;-0.0087;0.0631;
-1;-0.8774;-0.7725;-0.6767;
0.0087;0.2308;0.3585;0.4806;
0.011;0.1664;0.2362;0.2718;,
fr=0;3;1;0;2;0:0;2;3;1;2;1;1;3/
2;0;0;2;1;2:3;1;2;0;1;2;0;0/”

Figure 4: Example of the Fuzzy system encoding within the f0 genotype.

more robust behaviors. Thus agent behaviors could be non-deterministic, and we
needed to evaluate them many times and average their performance. Therefore the
“cloning” operation accompanied the mutation and crossing over operations. Cloning
produces an agent that is based on the selected genotype that is unchanged (so it
must have been already evaluated). The proportion of cloning:mutation:crossover
operations was 20:64:16. The optimization is stopped when there is no best-fitness
improvement for 5000 genotype evaluations.

4.1 Genetic encoding of the fuzzy rule based system

The basic genetic format in Framsticks [10] is named f0, and it directly encodes
body and its control system, which may be a fuzzy system unit (see Fig. 4 for an
example). Special genetic operators for the fuzzy system unit are provided to allow
for its evolution.

The ns and nr fields define how many fuzzy sets and fuzzy rules are present in
the fuzzy system (in total). The fs field defines fuzzy sets, and the fr field describes
fuzzy rules. A single fuzzy rule is defined by nonzero integer values. They represent
the number of inputs in the premise part, the fuzzy set used for the fuzzification of
the input, the number of outputs in the conclusion part and the fuzzy set used for
the defuzzification of the output. Each fuzzy rule may have a different number of
premises and conclusions.

4.2 Fuzzy system crossing over

The crossing over used in this work is a hybrid of two methods:

1. The operators cut and exchange genetic information based on a fixed number
of cross-over points (one-, two-, or more) [Fogel 2000].

2. Some information taken from the parents is averaged.

The general definition of this method is presented in [5, 19]. In this paper, the
length of the parent genotype parts is averaged. Then individual genes are taken
randomly from both parents. Some genes are copied from one parent without changes.

A very similar method is presented by Casillas [3], where it is called the partially
complementary method.

The information inherited from the parent fuzzy systems are both fuzzy sets and
rules. Crossing over operations are performed in such a way that all the fuzzy sets
(from both parents) are copied, and the identical ones are used only once. The
number of the descendant’s fuzzy rules is drawn as a random number from between
the numbers of parent fuzzy rules. The same procedures are used to draw the numbers
of inputs and outputs in the new fuzzy rule (using the numbers of inputs and outputs
in the parent rules, respectively).

4.3 Fuzzy system mutation

A number of dedicated mutation types are used during optimization.

e Add new fuzzy set creates a new fuzzy set with random values. It is also neces-
sary to add a new fuzzy rule, which uses the newly created fuzzy set (to avoid
unused fuzzy sets).

e Remowve random, existing fuzzy set.

o Add new fuzzy rule creates a rule with random numbers of inputs and outputs,
and random number of fuzzy sets assigned to each input and output.

e Remove random, existing fuzzy rule.

o Add new input or output and Remove random, existing input or output: the rule
to be modified is selected randomly, then random input/output is added /removed.

5 Experiments and results

5.1 Experimental setup

To verify whether evolutionary optimization is capable of producing successful, inter-
pretable control systems automatically, we designed two types of balancing constructs.
The considered balancing problem is in some aspects similar to the inverted pendulum
problem, but it is much more difficult. We consider an autonomous, active, elastic
construct that is capable of acting and changing its shape based on its own evolved
logic. Therefore the means to achieve success are different than in the classical in-
verted pendulum problem [8, 12] where the control is external to the fixed pendulum
construct. In our experiments, the base (point of support) is usually not being moved
(although it is not fixed to the ground), but the construct itself is active and can bend
within two vertical, perpendicular planes.

Tilt sensors and actuators are fixed in the construct, and sensors provide informa-
tion for the control system which controls the actuators. The sensors generate signals

\/

Figure 5: Two kinds of balancing constructs. The “G” symbols denote tilt sensors,
and squares illustrate bending actuators.

from the [—1, 1] range depending on the spatial orientation of the joint they are lo-
cated in, relative to the horizontal ground plane. The two considered construction
models (with one and two points of support) are shown on Fig. 5.

In both cases, the basic optimization task was to evolve a control system capable
of keeping the top part of the construct from touching the ground for as long as
possible. The single-support-point model could use its two actuators to bend its base
in two planes. The second model could bend its top joints in two planes to balance
and stabilize. Note that if the pendulum is not moving its base point, then it is hardly
possible to keep it balanced once it starts falling and its center of mass is shifted off-
base (balancing would require the construct to immediately rotate one of its parts,
while actuators cannot act instantly). The only way to move the base point that
supports the weight of the entire construct is to jump — which is extremely unlikely
to happen (actuators have limited power) and extremely difficult to control (note the
pendulum is elastic). We are going to see how evolutionary process will cope with
this nearly impossible task.

In the experiments, the agents had a fixed body structure (parts, joints), and the
number and placement of sensors and actuators were also fixed. The control system
was optimized. It was either a fuzzy system (with a variable number of fuzzy sets
and fuzzy rules) or a neural network (with a fixed or evolved topology).

5.2 Neural network and fuzzy controllers

Two kinds of experiments were performed with the artificial neural network con-
trollers [2, 20]. Firstly, a few network topologies were designed (these are shown on
Fig. 6), and for these topologies, only connection weight values were optimized. Note
that recurrent connections existed in one topology. Secondly, the evolutionary process

Figure 6: Pre-designed neural network topologies used in the balancing control task.
Units shown as “4” provide a constant signal value, 1. Tilt sensors are shown on the
left side, and bending actuators are shown on the right side of each diagram.

&
&.EJ / \\
L

\ o
D
Figure 7: The fuzzy system control architecture.

was given a chance to modify the network topology as well (i.e. add and remove neu-
rons and connections). In this case, neural networks could have any complex topology
with multiple recurrent connections.

The general structure of the fuzzy control system is shown on Fig. 7. Four tilt
sensors provide signals for the fuzzy system, which outputs two control signals for
the bending actuators (on the picture, this is a single two-channel connection). The
two triangle units are required to select a single signal channel from the two-channel
fuzzy system output.

Additionally, a number of experiments have been performed with more complex
topologies of neural networks, other locations of sensors in the pendulum (i.e. on the
vertical shaft), differentiating neurons introduced for sensory inputs, and different
rates of simulation of the control system (versus physical simulation). These modifi-
cations did not yield considerable changes in evolved behaviors so the simple setups
are described below.

5.3 The need to explain fuzzy systems

To investigate the meaning of evolved control systems, a mapping was needed from
the evolved rules and fuzzy sets to the variables understood by an expert, in or-

der to present the rules in a linguistic form. A FuzzyEzxplain application has been
implemented to investigate the knowledge existing in evolved control systems. The
mapping from evolved fuzzy data to the variables understood by an expert is based
on the comparison of evolved fuzzy sets and linguistic variables defined by an expert.
Accordingly, the evolved fuzzy sets are then substituted with the most similar vari-
ables previously defined by an expert. Thus the mapping allows presenting the fuzzy
neuron parameters as natural language sentences.

The sample explanation of the fuzzy neuron parameters is shown below. Assume
the fuzzy neuron is described as follows:

n:d="Fuzzy:ns=5, nr=4,
fs=0.0123;0.182;0.4877;0.4958;-0.9654;-0.8361;-0.644;
-0.4643;-1;-1;-0.9719;-0.852;0.3982;0.6898;0.8066;
1;0.8152;0.9052;1;1;,
fr=1;1;3;1;0;2:1;4;0;1/2;0;3;0:0;0/1;2:0;1/2;3:0;0/"

Then, an expert defines linguistic variables that cover the most characteristic parts
of the variable domains. Assume that three disjunctive fuzzy sets are defined: upright
(-1; -1; -1; 0), leveled (-1; 0; 0; 1) and upside_down (0; 1; 1; 1) on each input
variable domain (input variables correspond to the tilt sensor signals). Moreover,
three disjunctive fuzzy sets: right (-1; -1; -1; 0), none (-1; 0; 0; 1) and 1left (0; 1; 1;
1) are defined on the domains of the two output variables (bending actuators). This
sample mapping results in the following set of four linguistic rules:

1. s2=upright and s4=upright and sl=upright => bendl=right and bendO=left
2. s3=upside_down and s4=upside_down => bendO=right
3. s2=upright => bendO=left
4. s3=upside_down => bendO=right

This approach is used in Sect. 5.5 to explain behaviors of evolved fuzzy control
systems.

5.4 Fitness functions and optimization results

The design of a good fitness function turned out to be a nontrivial task. A few
functions were created and their support for evolvability was verified for both neural
and fuzzy controllers. The most interesting fitness functions are described below.
Note that we consider an optimization process where the fitness value is taken into
account only after a full period of simulation of an agent, not during simulation (as
it would be the case e.g. in reinforcement learning). The figures show the first type
of the balancing construct (see Fig. 5, left picture), because it is simpler to depict.
However, the results were similar for both types of models.

The most obvious, maximized fitness function reflected directly the time from the
beginning of agent simulation until the moment when any of the body points (except
the lowest base point) touches the ground. The evolved neural network controllers

Figure 8: The balancing behavior generated by the evolved neural network controller.

(described in Sect. 5.2) were able to keep the construct in the upright position for
a period of time, usually involving three or four cycles of bending and balancing.
The more complex neural network topology (see Fig. 6), the better were the results.
Best results were obtained for the network where both weights and topology were
optimized (see Fig. 8). The first moments of simulation were the hardest to keep
straight, because the elastic base was virtually compressed by the heavy top. The
actuators have limited power, so they may be unable to bend against the pressing
weight in spite of the control signal.

Evolutionary optimization of the fuzzy system failed for this fitness function. In
an initial population where all (random) fuzzy systems were equally unfit, it was
impossible to find (using described mutation and crossing over operators) any better
fuzzy system than those which did nothing and let the construct collapse. Some fuzzy
systems would bend actuators, but it would not cause improvement of the fitness
function value. The fitness landscape generated by the fuzzy system representation
and operators was initially so flat that there was no obvious direction for improvement
to be found by random mutations.

Therefore we needed to consider other fitness functions, which incorporated some
straightforward knowledge about the expected behavior, and produced easier fitness
landscapes. The text below focuses on the fuzzy control system evolution. For these
experiments, the simulation lasted a fixed amount of time, and the fitness was a sum
of partial values computed each five simulation steps.

First, we estimated angles of the four horizontal sticks with the tilt (“G”) sensor to
make the control system keep these sticks horizontally. This was intended to help the
construct from falling. We also added a vertical position fitness component to make
the construct “stretch” and stand vertically. However, this simple function was tricked
by an evolved fuzzy control system which made the construct balance upside-down,
i.e. with the heavy “head” on the ground. This position was also highly rewarded
according to the fitness function used. Such behavior of the construct exposed the
aliasing problems [25], where a set of identical sensory signals is acquired for different
positions of the body. As the construct is equipped with tilt sensors, it is not possible
to judge (based only on the sensory input) whether the body is inverted or not,
because only the relative angle to the horizontal plane is known.

To provide more freedom in balancing behaviors, the fitness function was changed
to allow for non-horizontal positions of the four “G” sticks as long as their vertical
position was adequately high. Additionally, a penalty was introduced for moments
when any of the body points (except the base) was near the ground. This fitness

Figure 9: Behaviors generated by the evolved fuzzy controllers and various fitness
functions. See text for details.

function produced interesting behaviors, taking advantage of the fact that the con-
struct was active. It bends the actuators so rapidly as to jump or push back from
the ground to minimize the time spent near the ground (Fig. 9, left picture). After
falling down it tries to straighten as soon as possible, but is able to stand only for a
short period of time.

Finally, the fitness function was modified to keep the plane defined by the four
horizontal sticks parallel to the horizontal surface. The vertical position fitness com-
ponent was retained. This was successful, because the evolved fuzzy systems were able
to keep the heavy head from touching the ground. The construct balanced using one
segment, the two other bent on the ground plane (Fig. 9, right picture) which formed
a stable base for the top, balancing part. Moreover, the resulting configuration was
robust to manual displacement and joggling of the top part, and the construct was
able to continuously maintain the top from touching the ground plane.

The results of the experiments show that evolution of both neural and fuzzy con-
trollers for the considered task was successful. It turned out that neural networks
were easier to evolve than fuzzy systems (with respect to reconfiguration operators
that were used). More complex neural networks performed better. Fuzzy control
systems required more knowledge-rich fitness function to proceed with evolutionary
optimization, but they have an advantage — control with fuzzy rules can be explained
and interpreted.

5.5 Understanding evolved fuzzy rules

A large number of performed experiments yielded a set of interesting individuals. In
this paragraph, we present a detailed analysis of the evolved fuzzy rules, explaining

by

Top actuator

Figure 10: The construct body (shown in a bent position).

behaviors based on these rules. Fig. 10 introduces names for parts of the construct.

The base of the single-support-point construct is composed of three joints (Jy, Ji,
Jz) equipped with two actuators (bottom and top) working in two planes. The top
part of the construct is composed of four perpendicular sticks each equipped with a
single tilt sensor (Go, ..., G3). Sticks with Gy and G; form an arm Aj, and sticks
with G5 and G35 form an arm A;. Ag and A; form a cross that is called a “head”.

For analysis, a fuzzy system is selected that performed best for one of the fitness
functions, as described in Sect. 5.4. The evolved behavior is characterized by the
following observations:

e it reaches a stable position (shown on Fig. 10) very quickly,

e in the stable position, Jy and J; lie down on the ground, while J5 stands upright
supporting the head in the horizontal position ,

e after the construct is manually thrown off balance, it reaches the stability quite
quickly and the behavior strategies depend on the side it has been pushed to:

— if it has been pushed along its bottom joint (Jp), the actuators are bent
only slightly,

— if it has been pushed crosswise to the Jy, it makes sudden moves and after
a few cycles it usually reaches the stable position,

— if it is thrown upside down, the fuzzy system is unable to make it stand
straight.

After making these observations, two questions regarding the construct behavior
arise: what makes it stand still and what makes it come back so quickly to the quasi-
vertical stable position. To answer these questions, we perform a detailed analysis of
the evolved fuzzy rule system.

Since the optimization experiments considered only behaviors, not the complexity
of the control systems, the typical evolved fuzzy systems had many fuzzy sets and

fuzzy rules. Before attempting to analyze the control system, it was reasonable to
try to simplify it. This was achieved by performing an additional, short optimization
process with disabled genetic operators of fuzzy set add and fuzzy rule add. Modifi-
cations and deletions of sets and rules were allowed. Thus we were able to radically
decrease the number of fuzzy sets and rules — the number of rules was reduced from
twenty to five without deteriorating fitness.

Each fuzzy system has four inputs and two outputs. Input signals s0, s1, s2, s3
come from four sensors. Based on their values, the fuzzy system sends two outputs
signals for actuators: bend_bottom and bend_top. Input and output fuzzy variables
are defined in the normalized domain [—1,1]. Input linguistic variables upright,
leveled and upside_down are defined as follows: (-1, -1, -1, 0), (-1, 0, 0, 1) and (0, 1,
1, 1), while the outputs characterizing bending directions are expressed by linguistic
variables right (-1, -1, -1, 0), none (-1, 0, 0, 1) and left (0, 1, 1, 1). The fuzzy
system is therefore rendered as:

1. s2=leveled and sO=leveled => bend_bottom=left and bend_top=left
2. s3=leveled and sl=upside_down => bend_top=left

3. sl=upright => bend_bottom=left and bend_top=left
4. s3=upside_down => bend_bottom=right and bend_top=left
5. sl=upside_down => bend_bottom=left and bend_top=none

The first interesting observation is that the pairs of sensor signals (s0, s1) and (s2,
s3) never come together in a single premise of the rule. It is because the simplifying
optimization process discovered a property of the construct shape: the signals from
these tilt sensor pairs are almost the same. This is the consequence of placing sensors
(Gp, G1) and (G2, G3) on the same arms, respectively.

The first control rule refers to the situation where the construct head is parallel to
the ground. In response, both actuators are bent left, which corresponds to the stable
position as shown on Figure 10. Thus the stable position is guaranteed by the position
of Jy — even in situations when the Ag slants, which is detected by G (upright or
upside_down) in three rules: #2, #3 and #5. The rule #2 is active when the tilt
sensor G is leveled, and Gy (placed on the stick parallel to Jp) is turned upside down.
The rule conclusion controls only the top actuator, bending it left. The rule #5 is
similar to #2, and it evolved to reinforce #2. The rule #3 results in bending both
actuators left. The construct behavior for the cases described above involves only
slight moves, leading to the stable position very quickly.

Rule #4 is crucial and explains the most spectacular behavior in cases when the
head (its A; arm) is bent crosswise to the bottom part Jy. One could expect this to
be the most difficult situation, but the output bend_bottom=right results in a sudden
move that in most cases returns the construct to the stable position. If not, then the
rapid move is repeated. This rule has been also tested in extreme cases. If the body is
excessively moved from side to side and it reaches very difficult positions, then rapid
moves caused by the rule #4 may deteriorate the construct orientation, and finally
it may unfortunately fall upside down (with the head on the ground). This position
is also stable. The explanation of the lack of a special rule for this situation is quite
simple. During evolution, the initial simulation position of the construct was always

the same, so it never had a chance to reach extreme positions that we evoked during
testing. Thus the fuzzy system was never evaluated nor optimized in such specific
situations.

The evolution of fuzzy control systems required fitness functions that more explic-
itly expressed desired goals. However, the analysis of the evolved controllers confirms
additional value of the fuzzy rules knowledge. The fuzzy rules obtained during experi-
ments, when referenced to the construct structure, are plain and easily understandable
to a human.

6 Conclusions

This work concerned evolving neural and fuzzy controllers for balancing active con-
structs. Evolutionary optimization experiments were performed to compare these
controllers in terms of their support for evolvability, fitness of obtained solutions,
their quality, and ability to understand knowledge existing in the optimized control
systems. With the representation and operators described in this paper, neural net-
works were easier to optimize both in terms of weights and their topology, than the
fuzzy system. However, where the fuzzy system optimization succeeded, both neural
and fuzzy controllers produced similar behaviors of the construct, and similar fitness
values.

The qualitative difference between the neural and fuzzy controllers is the verified
ability to extract knowledge from the latter. The obtained rules are easy to un-
derstand, and can clearly describe and explain the behavior of the construct, thus
ensuring a human expert that the control system is known and correct. A few fuzzy
rules can explain characteristic behaviors, e.g. vertical position of the construct and
the nontrivial ways it achieves stability. Such knowledge may be of great help for the
designer of the physical structure of an active agent, because it enables cooperation
between manual constructing of designs and optimization of the corresponding fuzzy
control systems. This feature is important for robotics [18] and automated design
of control systems and behavior scenarios which need to be understood, not only
evaluated and highly rated.

The simulation environment can be used to coevolve both the mechanics (place-
ment and connections of physical parts of its design, as well as the placement of
sensors and actuators) and the control system at the same time. Such a simultane-
ous coevolution of body design and the associated control system may discover even
better solutions for various problems.

An interesting direction of work is to formalize the presented approach and au-
tomate the corresponding procedure (evolving, simplifying, explaining) so that inter-
pretable fuzzy controllers can be created evolutionarily without much work for each
individual control task.

Acknowledgement

This work has been supported by the Ministry of Science and Higher Education, grant
no. N N519 3505 33.

References

1]

2]

[10]

[11]

Andrew Adamatzky. Software review: Framsticks. Kybernetes: The Interna-
tional Journal of Systems & Cybernetics, 29(9/10):1344-1351, 2000.

C.W. Anderson. Learning to control an inverted pendulum using neural networks.
Control Systems Magazine, IEEE, 9(3):31-37, 1989.

J. Casillas, O. Cordon, F. Herrera, and M. J. Del Jesus. Genetic tuning of
fuzzy rule-based systems integrating linguistic hedges. In Proc. Joint 9th IFSA
World Congress and 20th NAFIPS International Conference, volume 3, pages
1570-1574, 25-28 July 2001.

M. G. Cooper and J. J. Vidal. Genetic design of fuzzy controllers: the cart and
jointed-pole problem. In Proc. Third IEEE Conference on Fuzzy Systems IEEE
World Congress on Computational Intelligence, pages 1332-1337, 26—29 June
1994.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., 1989.

F. Herrera and M. Lozano. Adaptation of genetic algorithm parameters based
on fuzzy logic controllers. Genetic Algorithms and Soft Computing, 125, 1996.

J. Zizka. Learning control rules for takagi-sugeno fuzzy controllers using genetic
algorithms. Proceedings of the Fourth Furopean Congress on Intelligent Tech-
niques and Soft Computing, 2:960-964, 1996.

J.S.R. Jang. Self-learning fuzzy controllers based on temporal backpropagation.
IEEE Transactions on Neural Networks, 3(5):714-723, 1992.

C.Z. Janikow. A genetic algorithm for learning fuzzy controllers. Proceedings of
the 1994 ACM symposium on Applied computing, pages 232-236, 1994.

Maciej Komosinski and Adam Rotaru-Varga. Comparison of different genotype
encodings for simulated 3D agents. Artificial Life Journal, 7(4):395-418, Fall
2001.

Maciej Komosinski and Szymon Ulatowski. Framsticks: Creating and under-
standing complexity of life. In Maciej Komosinski and Andrew Adamatzky, ed-
itors, Artificial Life Models in Software, chapter 5. Springer, New York, second
edition, 2009.

[12]

[24]
[25]

[26]

M.A. Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy
logic techniques. Proceedings of the 5th International Conference on Genetic
Algorithms, pages 76-83, 1993.

P.J. MacVicar-Whelan. Fuzzy sets for man-machine interaction. Int. J. Man-
Machine Studies, 8:687-697, 1976.

L. Magdalena, O. Cordon, F. Gomide, F. Herrera, and F. Hoffmann. Ten years
of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and
Systems, 141(1):5-31, 2004.

L. Magdalena and F. Monasterio. Evolutionary-based learning applied to fuzzy
controllers. Fuzzy Systems, 1995. International Joint Conference of the Fourth
IEEE International Conference on Fuzzy Systems and The Second International
Fuzzy Engineering Symposium, 3, 1995.

E. H. Mamdani. Advances in the linguistic synthesis of fuzzy controllers. Inter-
national Journal of Man-Machine Studies, 8(6):669-678, 1976.

E.H. Mamdani and S. Assilian. Application of fuzzy algorithms for control of
simple dynamic plant. IFE, 121(12):1585-1588, 1974.

Chris Melhuish, Andrew Adamatzky, and Brett A. Kennedy. Biologically in-
spired robots. In Yoseph Bar-Cohen, editor, Smart Structures and Materials

2001: Electroactive Polymer Actuators and Devices, volume 4329, pages 16-27,
Newport Beach, CA, USA, 2001. SPIE.

Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer
Verlag, 2000.

C. Moraga and K.H. Temme. Functional equivalence between S-neural networks
and fuzzy models. Technologies for Constructing Intelligent Systems, 2002.

Timothy J. Ross. Fuzzy Logic with Engineering Applications. John Wiley and
Sons, 2004.

S.F. Smith. A learning system based on genetic adaptive algorithms. PhD thesis,
Department of Computer Science, University of Pittsburgh, 1980.

Andrea G. B. Tettamanzi. An evolutionary algorithm for fuzzy controller syn-
thesis and optimization. In In Proceedings of the IEEFE International Conference
on Systems, Man and Cybernetics, pages 22-25, 1995.

H.B. Verbruggen and R. Babuska. Fuzzy Logic Control: Advances in Applica-
tions. World Scientific, 1999.

S.D. Whitehead and D.H. Ballard. Active perception and reinforcement learning.
Neural Computation, 2(4):409-419, 1990.

R.R. Yager and D.P. Filev. Foundations of fuzzy control. Wiley, New York, 1994.

Received September, 2007

