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Abstract

This report presents results of optimization of three-dimensional designs in two tasks using
various genetic encodings. Both tasks concern maximization of height; the goal is either maxi-
mization of the vertical position of the top vertex or maximization of the vertical position of the
center of mass. Parameters of the simulation and optimization are covered, including discussion on
the influence of non-deterministic noise and on the stopping criterion that is based on the number
of non-improving evaluations. Eight genetic representations are described and their performance
is demonstrated both in terms of fitness and the number of evaluations during evolution. Best
designs resulting from optimization are shown as well.
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Figure 1: Optimization of tables demonstrates that multiple objectives must be usually considered in
the area of evolutionary design.

1 Introduction

Designing structures has always been a domain of human experts; it traditionally required profes-
sional knowledge and experience. With the advent of computers came the possibility of simulation
and evaluation performed in silico, and this, combined with optimization algorithms, allowed to run
the process of design in virtual environments. Obviously, when design takes place within such an
automated procedure, care must be taken to ensure that the simulation is accurate enough to reflect
real behavior, including any non-deterministic factors and environmental noise.

From the perspective of optimization, the task of finding “best” designs is hard; the set of feasi-
ble solutions (designs) is usually infinite since the search space has a discrete-continuous character.
Solutions contain variable amounts of information, there are strong dependencies between parts of a
solution, there exist multiple local optima and numerous constraints. The evaluation of designs itself
is difficult, being non-deterministic, time-consuming, multi-objective (Fig. 1), and, typically, delayed
(the fitness of a construct is only known once the simulation has been completed). The optimization
problem gets even more complex when active constructs are considered — i.e., constructs that are
equipped with control systems coupled with their physical structure.

For these reasons, the key aspect in optimization is the representation of designs and reconfigu-
ration operators that allow to change the designs. In the context of evolutionary optimization, the
representation and the operators are called genetic. Their importance comes from numerous roles
they play; artificial genetics brings structure to the search space, provides “building blocks”, intro-
duces biases, can reduce the solution space, and can be further characterized in terms of scalability,
robustness, redundancy, compression, easiness of interpretation, support for modularity, etc. Genetic
representations can also vary in terms of their interpretation (i.e., understanding the process of trans-
formation from a genotype to a phenotype) — the mapping between genes and phenes may be direct
or indirect, implicit or explicit, and the same genes may perform identical or different roles depending
on the context or on the stage of development of a construct [22]. Genetics being a pivotal aspect in



optimization of designs, it is the subject of this work.

The computational experiments reported here concerned optimization of tall three-dimensional
constructs; while these structures were evaluated in simulation, this setup is a prototype for real-world
applications. Related research on evolutionary optimization in structural design and evolutionary
design of tall constructs can be found in [16, 17, 29, 15, 3].

1.1 Simulation model

While genetic representation and its operators are important from the viewpoint of the optimization
algorithm, the role of the representation itself is to describe a design (any design) that is considered
feasible. This obviously depends on the experiment and the goal; various models of designs have been
devised so far [31, 4, 5, 7, 30, 26, 9, 34]. Such models are usually created ad hoc — one model for
one experiment or application, thus there is no reuse and no meaningful comparisons can be done.
However, some kind of standardization is certainly possible. When we look at our surroundings, we
will notice that many constructs and life forms can be modeled using graphs, with vertices and edges,
as shown in Fig. 2.

The elements of the model that is considered in this work concern body (material structure) and
brain (control system). The body is made of vertices (“Parts”) and edges (“Joints”), and the brain
is made of neural units (including signal processing, sensors, and actuators) and their connections.
Control units can be embodied (fixed in body, i.e., assigned to Parts or Joints) or not.

In the model, Parts of the body are characterized by 3D position, orientation, physical properties
like mass, friction, etc., and other properties that depend on the experiment (ingestion ability, color,
etc.). Joints reference two Parts; their physical properties include axial and rotational stiffness, and
other properties can include stamina, assimilation ability, etc. There are some constraints imposed
on the body: at most one Joint can directly connect two Parts, each Joint must be connected with
two distinct Parts, and all Parts must be directly or indirectly connected with each other. Brain is
modeled as a network of any topology that contains “neural” control units with weighted connections.
Each control unit can optionally have a list of properties (parameters). The model can represent a
number of real constructs, including the ones popular in robotics [26, 28, 12]), architecture, design
and engineering [8, 11, 33] (trusses, arches, bridges, scaffoldings, tensegrities [14], ...), biology [5],
chemistry, and computer graphics [6], as illustrated in Figs. 2 and 3.

2 Genetic representations

To date, many genetic encodings have been proposed that are capable of representing 3D designs [33,
5,28, 32, 1, 20, 11, 27]. They usually concern different simulation models, so their performance cannot
be compared. This report takes the approach similar to the previous work of the author [20], where
genetic representations constitute a hierarchy and each encoding must ultimately convert into a Direct
encoding which describes a Model that can be simulated, as illustrated in Fig. 4.

The genetic encodings, apart from the conversion process, may additionally supply mapping infor-
mation regarding individual parts of a genotype (genes), which may help in “genetic debugging” or
tracing genes in evolution [22, 23]. Moreover, there may be more than one conversion path for each
encoding as shown in Fig. 5.

It is important to realize that each encoding usually provides their own, specialized reconfiguration
operators, so the optimization search takes place within the search space induced by the encoding.
Genetic representations may differ substantially and may implement entirely different concepts (Fig. 6),
so the topology and size of the search space is distinct for each encoding.

Using SDK [21], developers and researchers can easily add new representations and their operators
to extend the hierarchy. Basic operators are mutation and crossover, and additionally, validity check,
repair, and estimation of genetic similarity can be provided. Genetic encodings have unique numbers
(f0, 1, etc.) and names as Fig. 7 shows.
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Figure 2: Examples of 3D constructs and 3D life forms that share a similar character: chemistry (“ball-
and-stick” models), biology (stick insects — Phasmatodea and an Orohippus skeleton), engineering and
design (including the “skeleton” truss tower of the Statue of Liberty on the right), and robotics (the
Stiquito robot [2] and evolved stick robots [26]).
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Figure 3: Three-dimensional graph-based models of real objects.

Figure 4: The idea of the hierarchy of genetic encodings.
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Figure 6: Genotypes require specialized genetic operators for each genetic encoding.
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Figure 7: Genetic hierarchy with both symbolic and descriptive names of representations.

2.1 Description of genetic encodings

The following list outlines major properties and concepts of the eight encodings that have been used
in experiments; sample genotypes are presented as well when they are one-line strings.

e f0: Direct encoding
The genotype in this encoding enlists all elements of a phenotype. The particular format used
here is not relevant, since mutation and crossover work on phenotypes, not on genotypes. Muta-
tions change individual aspects of a phenotype (locations, connections, or properties of elements
of the model), and crossover joins two halves of parent bodies that have been cut by a random
plane [20].

e f9: Turtle3D-ortho encoding
This extremely simple encoding uses six letters for up, down, left, right, forth, and back. The
phenotype body is “drawn” in a 3D space using steps of unit length. Control system cannot
be currently encoded. A sample genotype is BBBRLLRUDDFUUDFFF. Mutation changes, adds or
removes one letter. Crossover is two-point.

e f1: Recursive encoding
This encoding uses X characters to describe Joints, and neural units with their weighted con-
nections are placed in square brackets. Parentheses mean branching of a structure. Addi-
tional letters modify length and other properties of body elements. A sample genotype is
XXrrX (X,LLLX[G:3]). Mutations and crossover work on the textual representation of the geno-
type; crossover is two-point.

e f4: Developmental encoding
This encoding may look similar to the f1, but it in fact describes a process of growth and special-
ization. There are three additional characters (genes) introduced. The ‘<’ gene divides a “cell”
into two cells, and the ‘>’ gene finishes development of a cell. The ‘#’ gene repeats a sequence of
development encoded by the following genes. A sample genotype is <L<XE#2>><WX>Xs>XI. Muta-
tions and crossover work on a tree structure that represents a program of growth (development)
of a phenotype.

e f2: Similarity encoding
In this encoding, each element of body and brain constitutes a separate entity that has two



“handles” represented by a vector of numbers. When the phenotype is constructed, these entities
are joined so that the most similar handles stick together. Crossover picks random elements from
parents and passes them on to offspring. Mutation adds elements, removes them, changes handles
or changes properties of elements.

e f3: Biological encoding

This representation encodes the concept of f2 in the string of characters that constitutes a
genome; each substring in the genome that starts with the “aa” codon and ends with the “zz”
codon is assumed to define a single entity in f2. A sample genotype is aabzzaabzzaabouhvpzz.
Mutation consists in substitution, deletion, insertion, gene duplication, or translocation. Crossover
is either a “horizontal gene transfer” (a single gene is transferred from one genotype to another)
or a standard crossing over where each gene from the parent genotypes is passed on to one of
the children.

o f7: Messy encoding
This encoding represents the idea of a “hash function”; the genotype is a string of capital
letters that encode individual elements of body and brain. A small change in the genotype may
result in unpredictable changes in the corresponding phenotype, so the mapping between genetic
and phenetic spaces is disordered. A sample genotype is BBAABAGABTZBVUOQR. Mutations change
random letters, and crossover is two-point.

e f8: Generative encoding

This encoding allows to represent a parametric Lindenmayer system (L-system) [25, 10]; rules
(productions) are used to generate a fI genome. One can think of this representation as a set
of formal grammar rules that are modified and refined during optimization. During embryogeny
(phenotype growth), the rules must meet some conditions to fire (the conditions are also a part
of the genotype), and may call other rules or produce a part of a f1 genome. Mutation methods
are numerous; crossover produces one offspring that contains selected productions from both
parents.

3 Experiments

Two kinds of experiments have been conducted to test performance of the eight encodings described
earlier:

e Maximize vertical position of the center of mass.
e Maximize vertical position of the top vertex.

The task of maximizing height, used earlier by the author [20], is particularly suitable for testing
performance in evolutionary design. It has only one, well-defined criterion, yet it requires complex
structures to emerge that fulfill multiple requirements. This task is especially demanding where genetic
encodings do not implicitly provide any domain knowledge on how the structures should be designed.
The difficulty of building tall structures and opposing gravity is also manifested by theory, practice
and expertise in engineering, design, and architecture.

3.1 Experimental setup

The experiments took approximately 3 weeks on a one-core 3 GHz CPU and were performed using
the Framsticks environment [24, 23] with the following key parameters of the optimization process:

e optimization:

— experiment definition: standard

— gene pool capacity: 200



— positive selection: steady state, tournament (2), mutated:crossed-over ratio 8:1

— no multiple evaluation, no unchanged genotypes after selection

— negative selection: two-stage — remove random, then remove worst (“boost phase”)
— stagnation: 3 000 or 10 000 non-improving evaluations

— constraints: no more than 20 sticks in a structure

e simulation:

simulation period: 1000 time steps
— initial elevation: 0.1

— performance sampling period: 20
— neural net simulation: off

— performance calculation: after stabilization
— sampling period while waiting: 100
— allowed distance to be stable: 0.01
— world: flat

— simulation engine: MechaStick

— gravity: 1

— minimal/maximal joint length: 0/2

— imperfection — initial movement: 0.01

The optimization process consisted of two stages. In the first phase, negative selection was random.
Once the stagnation was detected, the negative selection was switched to “remove worst genotype
in population”, which resulted in a highly convergent optimization. When another stagnation was
detected, the process ended. For the two fitness goals mentioned above, two kinds of experiments
were performed with different stagnation periods. This results in 4 experiment setups, and for each
setup, 10 independent optimization runs were performed for each of the 8 genetic encodings.

A fully deterministic and accurate simulation would result in “perfect” structures being discovered,
i.e., ideally vertical bars that would stand vertically forever. To avoid this, some kind of randomness
and noise must be introduced. This noise took the form of small, random forces applied to each vertex
of a structure once the structure was created in the simulator. The structure was therefore shaken
slightly, so that ideally vertical, unrealistic bars would fall down. However, adding random noise
poses a problem: the simulation is no longer deterministic, and what was advantageous in eliminating
unrealistic behaviors turns out to help other imperfect structures to gain fitness. Some structures
could manage to stand straight because random forces were applied; these forces can accidentally help
such structures gain high fitness.

To alleviate this problem, the evaluation of each structure should be performed multiple times,
and its fitness should be averaged. Unfortunately, this does not fix the problem entirely. Due to the
nature of the optimization process, even when the evaluation of each structure is repeated 2, 10, or
100 times, the selection mechanism will always prefer structures with better average fitness which
means structures that were lucky in 2, 10, or 100 evaluations and the noise turned out to be favorable
for them (more than for other structures). Increasing the number of evaluations increases the time
needed for optimization drastically, yet it only reduces the problem of “fortunate winners, undeserving
losers”, not eliminates it — compare Fig. 12 in [20] and related discussion therein. Another issue is
that non-determinism makes it impossible to directly answer the fundamental question of “what is the
best solution found in optimization”; one can only say that the more evaluations, the more reliable
the fitness. Also, in the steady-state architecture with cloning (i.e., multiple evaluation) enabled, the
higher current fitness, the more evaluations — so the reliability of fitness varies for different genotypes.

Since the number of evaluations of different structures (the sampling of the search space) was the
priority here, noise was introduced to eliminate perfect, unrealistic structures, but multiple evaluation
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Figure 8: Best fitness in maximization of the vertical position of the center of mass. Stagnation period
was 3,000 evaluations (left plot) and 10,000 evaluations (right plot).
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Figure 9: Total number of evaluations in maximization of the vertical position of the center of mass.
Stagnation period was 3,000 evaluations (left plot) and 10,000 evaluations (right plot).

and averaging of fitness were not employed. This results in some fortunate structures being considered
best, yet being unable to reproduce their behavior because it were random perturbations that helped
these structures get high fitness when they were evaluated. You can see the manifestation of this
phenomenon in the images shown in the Appendix: some of the best constructs turned over when
they were simulated for the second time — they lacked (random) perturbations that allowed to keep
them upright when they were evaluated during evolution.

3.2 Maximization of the vertical position of the center of mass

Figs. 8 and 9 compare fitness and number of evaluations in the maximization of the vertical position
of the center of mass; each column in the box plot summarizes 10 runs of the experiment.

The fitness plots demonstrate that increasing the stagnation time from 3,000 to 10,000 evaluations
did not change the general pattern of relations between representations. The results of the longer
run are generally slightly better, but the difference is not dramatic. Longer runs resulted in a less
variable fitness values within 10 repetitions of the experiment for each encoding. The numbers of
evaluations compared between encodings do not vary much; however, the number of evaluations for
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Figure 10: Best fitness in maximization of the vertical position of the top vertex. Stagnation period
was 3,000 evaluations (left plot) and 10,000 evaluations (right plot).
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Figure 11: Total number of evaluations in maximization of the vertical position of the top vertex.
Stagnation period was 3,000 evaluations (left plot) and 10,000 evaluations (right plot).

some encodings may be quite unpredictable (e.g., Messy or Simil). Elongating the period of non-
improving evaluations from 3,000 to 10,000 (i.e., 3.33 times) resulted in a roughly similar increase in
the total number of evaluations, even though a larger increase might have been expected.

3.3 Maximization of the vertical position of the top vertex

Figs. 10 and 11 compare fitness and number of evaluations in the maximization of the vertical position
of the top vertex; each column in the box plot summarizes 10 runs of the experiment.

One can immediately notice that the fitness values are higher when vertical position of the top
vertex is maximized; best constructs had their top vertex at the height of approximately 10, while best
constructs in the previous task had their center of mass at about 2.5. Again, the results of the longer
run are generally slightly better and the variability of fitness is smaller. As in the first optimization
task, the number of evaluations is the least predictable for Messy and Simil encodings. Increasing the
stagnation period 3.33 times yielded a similar increase in the total number of evaluations.

The actual designs that are outcomes of the optimization in both tasks are depicted in the Ap-
pendix.
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Conclusions

Overall, in both optimization tasks, the general patterns and relations as demonstrated by performance
plots are similar. Based on the results of the experiments it may be tempting to draw conclusions
regarding comparison of efficiency of tested representations. These conclusions could be the following:

The Devel representation provided nearly best results in a relatively short time.
The Recur representation was almost as good.

The Turtle3D representation yielded results that had the most similar (yet mediocre) fitness in
both tasks.

The Messy representation was the least predictable.

However, instead of comparing encodings in terms of better/worse, the results presented here
should rather be treated as a demonstration of “this encoding can perform at least as good”. The
reasons are the following:

Encodings Direct, Recur, Gener, and Turtle3D either allowed for restriction or were naturally
limited so that the genetic operators would not produce structures with control systems. On
the other hand, the four remaining encodings either have intrinsic abilities to produce neural
networks and these abilities cannot be easily turned off, or were not restricted to only produce
passive structures. Even though control systems were not simulated at all, this resulted in a
much larger search space (a larger number of neutral mutations) for the latter encodings.

Encodings Direct and Turtle3D allowed for cyclic (i.e., more rigid) structures; other encodings
could only express tree-like structures.

The Turtle3D encoding has a fixed, standard stick length (1), while other encodings can produce
sticks of variable length (from 0 to 2). Given the limit of 20 sticks, fixed stick length directly
influences the maximal height of constructs that can be designed.

Some encodings — Direct, Recur, Devel — are considered more mature. More time has been spent
on finding their weak points and improving them. The remaining encodings may carry some
potential that is yet to be exploited.

Generally, in the two simple optimization tasks that have been considered in this report,

All of the representations can be used depending on the requirements.
No evidence was found that the complex generative representation Gener was advantageous.
Reducing of the search space is beneficial.

Numerous local optima exist.

Further work will concern improvement of the shortcomings that are already known for some of the
encodings. Another direction of work is to provide more uniform conditions for the comparison — like
the ability to remove the elements of the control system from the search space for all representations.
Larger experiments (longer runs, bigger populations, more complex goals) and broader analyses of
the data that describe dynamics of evolutionary processes will reveal characteristics, specifics and
qualities of the encodings. For such analyses, measures estimating symmetry [13] and similarity [19]
will be helpful; the latter will also allow for human-friendly visualization of results and investigation
of properties of the search space for each representation [18].
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Figure 12: Maximization of the vertical position of the center of mass with the stagnation period
of 3,000 evaluations. Encodings from top to bottom: f0 (Direct), f1 (Recur), f2 (Simil), {3 (Biol),
14 (Devel), f7 (Messy), f8 (Gener), f9 (Turtle3D).

Appendix

The following images show best constructs evolved for each genetic encoding in ten independent
optimization runs. If viewing an electronic version of this report, zoom in to see more details. Figs. 12
and 13 concern maximization of the vertical position of the center of mass, and Figs. 14 and 15 concern
maximization of the vertical position of the top vertex.
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Figure 13: Maximization of the vertical position of the center of mass with the stagnation period of
10,000 evaluations. Encodings from top to bottom: f0 (Direct), fI (Recur), f2 (Simil), {3 (Biol),
14 (Devel), f7 (Messy), f8 (Gener), f9 (Turtle3D).
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Figure 14: Maximization of the vertical position of the top vertex with the stagnation period of 3,000
evaluations. Encodings from top to bottom: f0 (Direct), f1 (Recur), f2 (Simil), f3 (Biol), f4 (Devel),
f7 (Messy), f8 (Gener), f9 (Turtle3D).
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Figure 15: Maximization of the vertical position of the top vertex with the stagnation period of 10,000
evaluations. Encodings from top to bottom: f0 (Direct), f1 (Recur), f2 (Simil), f3 (Biol), f4 (Devel),
f7 (Messy), f8 (Gener), f9 (Turtle3D).
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