
Evolutionary construction of derivations in classical

propositional logic using a symbolic-connectionist

representation

Maciej Komosinski Adam Kups

Technical Report RA�3/17

Institute of Computing Science
Poznan University of Technology

May 2017

Abstract

This report introduces a way derivations in classical propositional logic can be

constructed using evolutionary algorithms. The derivations are represented by con-

nectionist systems. There are three kinds of nodes constituting these systems: for-

mula nodes that generate signal in the form of strings of symbols, modus ponens

nodes that transform incoming signal according to the modus ponens rule, and sub-

stitution nodes that transform incoming signal by applying the substitution rule.

This work presents initial research on an approach that is a part of our quest for

e�cient construction of derivations using various logics and constrained in various

ways. The �nal part of this report outlines limitations encountered in our initial

experiments and the ways the proposed approach can be improved.

1 Introduction

This report describes a technique that may be used to automatically obtain derivations
expressed in the language of classical propositional logic. The ultimate goal of this
research is to apply this technique to generate a special kind of derivations which are
axiomatic proofs. The di�erence between proofs and derivations is such that proofs
are based on a speci�c kind of formulas called axioms, which allow to derive the entire
classic propositional logic (CPL); see [11] for examples of axiomatic proofs. The approach
explicated in this report covers:

1. the representation of the set of source formulas as a group of input nodes that
output a signal in the symbolic form,

2. the representation of rules transforming formulas into other formulas as nodes
transforming input symbols into output symbols,

3. the representation of derived formulas as output nodes,

4. the application of evolutionary optimisation to build derivations of selected formu-
las from sets of formulas.

1



2 Derivations in CPL

A derivation d(A,X) of a formula A from the set X is a sequence s of formulas such that
each formula of the sequence either belongs to X, or is obtained from previous formulas
of the sequence by applying the modus ponens (MP) rule or the substitution (SUB). The
last element of s is A.

More formally,
s =< X1, . . . , Xn, R1, . . . , Rm, A > (1)

where X1, . . . , Xn are formulas from X and R1, . . . , Rm are formulas obtained by the
application of the rules to the formulas occurring earlier in the sequence.

The MP is a rule that allows to derive the the formula B from the implication A→ B
and the formula A.

More formally,
A→ B,A ` B (2)

The operation of substitution can be expressed as a function SUB(A, x,B) that takes
three arguments: the formula A which is the subject of substitution, the variable x, and
the formula B. The substitution operation returns a formula C which di�ers from A
only in that in each place where the variable x occurs in A, the formula B is put instead.
When A does not contain x, A and C are identical.

SUB is a rule that allows to derive the formula SUB(A, x,B) from the formula A,
and arbitrary x and B.

Formally,
A ` SUB(A, x,B) (3)

It is easy to prove that both MP and SUB preserve a property of being valid in
classical propositional logic. This means that if the premises of those rules are tautologies,
then the conclusions are also tautologies.

3 Derivations in a connectionist environment

In order to express a logic as a connectionist system, various approaches are possible [5, 1].
In this report we propose a hybrid connectionist-symbolic approach where there are two
kinds of nodes: the formula nodes and the rule nodes, and the signal �owing between
nodes consists of strings of symbols that represent formulas.

Formula nodes (FNs) are initial nodes in the sense that no signal �ows into them �
they only output strings of symbols. Formula nodes are characterized by one parameter,
f , which is a string of symbols that represents a formula from the set X.

Rule nodes are of two types: substitution nodes (SUBNs) and modus ponens nodes
(MPNs). SUBNs have one input and they output a string of symbols that represents
formulas obtained by the application of the substitution rule to the formula represented
by the string of symbols input to the node. SUBs have two parameters: x that represents
a propositional variable which is to be replaced during substitution, and s that represents
a formula that replaces the variable represented by x. MPNs are nodes with two inputs.
The implementation of an MPN is the most problematic out of all of the node types
because it requires the decision of what kind of signal should be �owing out of these
nodes when the input signals to those nodes do not represent the implication A→ B and
the antecedent A. Should the output signal represent the implication, the antecedent, or

2



should it be some kind of a �null� signal, or should some other �default� formula be sent
out of such a node? When networks of derivations are constructed manually, the selected
approach depends on the conveniences/inconveniences of the human designer. However,
when the automated, optimization-oriented constructive approach is employed, various
choices regarding the MPNs output may result in vastly di�erent outcomes and di�erent
quality of obtained derivations. Research comparing such outcomes is one of our future
tasks. In the current implementation, the �improperly wired� MPNs output a signal that
represents an empty string of symbols.

Each node can have a branching output, i.e., the output can be connected to many
other nodes at the same time, with identical signal �owing through all these connections.
This facilitates parallel processing and indicates that constructed networks are in fact
families of (possibly multi-) connected derivations. Note, however, that cycles in such
networks should not exist.

4 Building of derivations as an optimization task

For computational experiments, Framsticks software is used [9, 8]. In the preliminary
version of automated building of the derivation network, the evolutionary algorithm is
employed [2]. Only mutation operator is in use, and it can randomly change several
attributes of derivation networks:

• it can add and delete new nodes,

• it can change parameters of nodes,

• it can add and remove connections between nodes.

If needed, selected nodes, parameters or connections can be marked as immutable to
preserve the desired characteristics of networks across subsequent generations of deriva-
tions networks.

While in this work we report results of a directed evolutionary algorithm, where
the goal is the maximization of objective, single-criterion �tness, another interesting
approach would be to randomly generate derivation networks (e.g. by random modi�ca-
tions of some initial network) and then analyze the behavior of the set of these randomly
modi�ed networks. Such an analysis could provide useful data concerning etymology and
patterns in the set of derivations, and to further obtain knowledge about how to con-
struct e�cient �tness functions [12] and about heuristics needed to arrive at particular
formulas during derivation.

The optimization is performed according to a standard procedure in evolutionary
algorithms, in particular:

1. it starts with one individual in the gene pool � a genotype that represents a col-
lection of FNs,

2. in each cycle, one selected genotype is mutated and translated to a phenotype that
is simulated for several simulation steps,

3. after this, the value of the �tness function for this phenotype is calculated,

4. if gene pool capacity is exceeded, selected genotypes are removed.

3



#0 - Synin

10

#1 - Synin

10

#2 - Subst

10

#3 - Mp

10

#4 - Subst

10

#5 - Mp

10

#6 - Synout

10

Figure 1: A sample derivation generated by the evolutionary algorithm described in
Sect. 4.

In the most naive approach, the �tness function can be de�ned as the similarity
between the speci�ed formula and the output of the nodes in the tested phenotypes.
Following this approach, each node of the network was examined and the one with
the most similar formula determined the �tness value of the entire derivation. More
precisely, the similarity was expressed as the number of identical symbols at identical
positions in pairs of formulas divided by the number of symbols in the speci�ed formula.
For example, let us assume that we try to construct a derivation of the formula p → p
and there is some node that outputs the formula p → q. The value of this node would
be v = 2

3 ≈ 0.67, because two symbols in the formula produced by the node match their
respective position in the formula for which we try to build a derivation. Were this value
the highest of all nodes in the network, then this value would be the �tness value of the
network. In other words, the �tness value is the maximum of the function which maps
the nodes into values representing similarity between the target formula and the formula
produced by the respective nodes. The motivation for such a �tness function was to
obtain a derivation of a particular formula from the speci�ed set of formulas represented
by immutable FN nodes.

For this naively de�ned �tness function, various evolutionary selection strategies
were tested (such as �only the best/worst�, roulette, tournament, etc.) for both posi-
tive (mutation) and negative (removal) selection stages. This kind of optimization-based
derivation building, although sometimes successful, was not particularly e�cient. One
reason for that is that the �tness function did not yield a smooth landscape, and addi-
tionally it was highly probable that a trend of the increasing �tness value lead to a local
plateau. Another reason for di�culties in optimization is that changing parameter values
of SUBNs was unrestricted (i.e., any randomly generated formula could have been put in
the premise-formula) which resulted in many low-quality networks. Several improvement
strategies that may help overcome these di�culties are discussed in Sect. 5.

A sample generated derivation of formula p → p from the set {p → (q → p), (p →
(q → r)) → ((p → q) → (p → r))} is presented in Fig. 1. The translation of this
simple network to a form of a derivation is provided below. While, technically speaking,
a derivation is a sequence of formulas, here we present the list of formulas and operations
performed on them accompanied by the names of the nodes (in square brackets) to clearly
demonstrate how the generated network works. The names of the nodes correspond to
the # numbers in Fig. 1, and the types of nodes provided in square brackets correspond
to the previously introduced rule descriptions.

4



1. (p→ (q → r))→ ((p→ q)→ (p→ r)) [FN #0],

2. p→ (q → p) [FN #1],

3. (p→ (q → p))→ ((p→ q)→ (p→ p)) [SUBN x : r, s : p, #2],

4. (p→ q)→ (p→ p) [MPN, #3, #2],

5. (p→ (q → p))→ (p→ p) [SUBN x : q, s : q → p, #4],

6. p→ p [MPN, #5, #2],

7. p→ p [output].

5 Conclusions and future work

This report described one approach to the representation and the automated genera-
tion of classical propositional logic derivations as hybrid symbolic-connectionist systems.
Automated generation is performed by means of evolutionary optimisation. Preliminary
results are mildly satisfying, but more importantly they provide information on what
should be done to improve e�ciency of the approach introduced in this work. First of
all, the �tness function should be adjusted to yield a more smooth �tness landscape. This
can be done by taking into consideration more pieces of information than just the pre-
cise similarity between the expected derived formula and the formulas that are currently
derived by the connectionist system. Hints on what are these additional pieces of infor-
mation can be obtained by performing a meta research, comparing di�erent optimization
landscapes that correspond to di�erent �tness functions in order to establish what kind
of characteristics of the �tness function is most informative with respect to the global
optimum. Secondly, the mutation operator should be improved to avoid producing an
abundance of neutral or bad solutions. This is especially the case for the mutation of
substitutions nodes � this kind of mutation should be more sophisticated. Additional
information on how this kind of mutation should be enriched can be established during
a meta research similar to the one proposed for adjusting the �tness function.

Apart from the modi�cation of the procedure, future tasks also include the extension
of the research scope. This includes research concerning the generation of axiomatic
proofs for CPL. The next step would be to extend the logic used in the research from the
CPL (which serves as a testbed) to more interesting epistemic propositional logic [3, 13].
Yet another interesting analysis may concern the genesis of the considered derivations
systems during the evolutionary optimization, and comparing such attempts to obtain
proper derivations with the behavior of a logician when performing the same task. This
kind of analysis could provide interesting knowledge useful both for the experts (logi-
cians) and for the optimization process. Finally, future plans also include modifying
the procedure to solve abduction tasks. The abduction-oriented approach [4, 10] can
be understood as a reinterpretation of the process of �nding a derivation � where the
central question is �which formulas were added to construct a derivation�, and not �is
it possible to (e�ciently) construct a derivation�. As abduction in this approach is the
process of �nding formulas, called abducibles, that �ll the deductive gap between some
set of formulas and another formula (called the abductive goal) [7, 6], the procedure
would require careful analyses of the signal (that represents formulas) in the generated
derivation to establish which formulas serve as abducibles. A more sophisticated and

5



dynamic approach could operate not on formulas, but on derivation rules that are needed
to derive a formula. This kind of research would concentrate on the assessment of the
e�ciency of such rules in solving an abductive problem, which would however exceed the
classical understanding of abduction.

References

[1] Artur S Avila Garcez and Gerson Zaverucha. The connectionist inductive learning
and logic programming system. Applied Intelligence, 11(1):59�77, 1999.

[2] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, Reading, MA, 1989.

[3] Jaakko Hintikka. Individuals, possible worlds, and epistemic logic. Nous, pages
33�62, 1967.

[4] Jaakko Hintikka. What is abduction? The fundamental problem of contemporary
epistemology. In Inquiry as Inquiry: A Logic of Scienti�c Discovery, pages 91�113.
Springer, 1999.

[5] Pascal Hitzler, Ste�en Hölldobler, and Anthony Karel Seda. Logic programs and
connectionist networks. Journal of Applied Logic, 2(3):245�272, 2004.

[6] Maciej Komosinski, Adam Kups, Dorota Leszczy«ska-Jasion, and Mariusz Urba«ski.
Identifying e�cient abductive hypotheses using multi-criteria dominance relation.
ACM Transactions on Computational Logic, 15(4):28:1�28:20, 2014. URL: http:
//doi.acm.org/10.1145/2629669, doi:10.1145/2629669.

[7] Maciej Komosinski, Adam Kups, and Mariusz Urbanski. Multi-criteria evaluation of
abductive hypotheses: towards e�cient optimization in proof theory. In Proceedings

of the 18th International Conference on Soft Computing, pages 320�325, Brno, Czech
Republic, 2012.

[8] Maciej Komosinski and Szymon Ulatowski. Framsticks: Creating and understanding
complexity of life. In Maciej Komosinski and Andrew Adamatzky, editors, Arti�cial
Life Models in Software, chapter 5, pages 107�148. Springer, London, 2nd edition
edition, 2009.

[9] Maciej Komosinski and Szymon Ulatowski. Framsticks web site, 2017. URL: http:
//www.framsticks.com.

[10] Marta Cialdea Mayer and Fiora Pirri. Propositional abduction in modal logic. Logic
Journal of IGPL, 3(6):907�919, 1995.

[11] Carew A. Meredith, A. N. Prior, et al. Notes on the axiomatics of the propositional
calculus. Notre Dame Journal of Formal Logic, 4(3):171�187, 1963.

[12] Franz Rothlauf. 3.3 Locality. In Representations for genetic and evolutionary algo-

rithms, pages 73�95. Springer-Verlag, 2006.

[13] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic

logic, volume 337. Springer Science & Business Media, 2007.

6

http://doi.acm.org/10.1145/2629669
http://doi.acm.org/10.1145/2629669
http://dx.doi.org/10.1145/2629669
http://www.framsticks.com
http://www.framsticks.com

	Introduction
	Derivations in CPL
	Derivations in a connectionist environment
	Building of derivations as an optimization task
	Conclusions and future work

