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Abstract. Evolutionary design of 3D structures – either static struc-
tures, or equipped with some sort of a control system – is one of the
hardest optimization tasks. One of the reasons are rugged fitness land-
scapes resulting from complex and non-obvious genetic representations
of such structures and their genetic operators. This paper investigates
global convexity of fitness landscapes in optimization tasks of maximizing
velocity and height of both active and passive structures. For this pur-
pose, a new dissimilarity measure for 3D active and passive structures
represented as undirected graphs is introduced. The proposed measure is
general and flexible – any vertex properties can be easily incorporated as
dissimilarity components. The new measure was compared against the
previously introduced measure in terms of triangle inequality satisfia-
bility, changes in raw measure values and the computational cost. The
comparison revealed improvements for triangle inequality and raw values
at the expense of increased computational complexity. The investigation
of global convexity of the fitness landscape, involving the fitness–distance
correlation analysis, revealed negative correlation between the dissimilar-
ity of the structures and their fitness for most of the investigated cases.

Keywords: evolutionary design · 3D structure · dissimilarity measure ·
optimization · global convexity

1 Introduction

Three-dimensional structures can be divided into two main groups based on
whether they have a system that actively controls their physical body, or they
don’t have such a system. Passive designs do not perform any action (they are
static) and therefore only their physical structure exists and can be subject to

? This paper was published in Applications of Evolutionary Computation, LNCS
vol. 11454, Springer, 2019, https://doi.org/10.1007/978-3-030-16692-2 8.
The second author was supported by the Faculty of Computing, Poznan University
of Technology, through the funds provided by the Ministry of Science and Higher
Education.

https://doi.org/10.1007/978-3-030-16692-2_8


Maciej Komosinski and Agnieszka Mensfelt

evolutionary optimization – examples of such structures are an antenna [1], a
bridge [2,3] or a truss [4]. Conversely, active designs do have a control system, and
the system is evolved along with the body – such structures are often encountered
in robotics [5,6,7] and in artificial life [8,9].

Designing 3D structures can be considered one of the hardest optimization
problems for a number of reasons: the search space is usually infinitely big,
the optimization process must combine both continuous and discrete aspects,
and evaluation of solutions is costly, non-deterministic, and involves multiple
criteria [10]. Additionally, a complex, non-obvious representation of solutions
along with its genetic operators usually leads to highly rugged fitness land-
scapes [11,12]. There are many metaheuristic approaches that can be used for
automated design, but evolutionary algorithms turned out to be the most suc-
cessful [11]. Despite the progress in the area of evolutionary design, many aspects
have to be still improved before it will be possible to routinely apply this tech-
nique for successful automated design of 3D structures.
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Fig. 1: Three sample fitness landscapes with the set of the same 20 solutions
denoted by letters ‘a’ to ‘t’ (in this work, these letters correspond to different
3D structures). Each of these fitness landscapes is induced by a different dissim-
ilarity measure, from dissim1 – the most convex, to dissim3 – the most chaotic.
For best performance of the optimization algorithm and the exploitation of the
global convexity property during search, the neighborhood and reconfiguration
operators should preserve the topology induced by dissim1.

The difficulty of any optimization task relies heavily on the shape of its fit-
ness landscape, with rugged landscapes generally corresponding to substantially
harder optimization tasks than smooth landscapes [13,14]. For combinatorial
optimization problems (e.g., for the traveling salesman problem), it was demon-
strated that their fitness landscape may possess the property of global convex-
ity [15]. If the fitness landscape exhibits this property, better solutions are more
similar to each other and to the global optimum than they are similar to worse
solutions. This property can be exploited to facilitate the process of evolution-
ary search. Note that the fitness landscape may possess the property of global
convexity or not – this depends on how the landscape is constructed, i.e., on
genetic operators that are used to traverse the landscape [16] (see Fig. 1). In
order to construct a smooth, globally convex landscape, efficient genetic oper-
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ators need to be designed. This is where the dissimilarity measure is helpful:
it allows to evaluate the correlation between the similarity of solutions and the
similarity of their fitness values. If this correlation is high (i.e., the dissimilarity
measure captured some important characteristics of solutions), then designing
genetic operators such that neighboring solutions in the search space are similar
will result in a smooth fitness landscape.

Despite the successes in the combinatorial optimization domain, global con-
vexity was not extensively researched so far in the area of optimization of active
and passive 3D structures. One of the reasons is the difficulty of dissimilarity
calculation for such structures. Therefore, the first aim of this paper is the intro-
duction of a new measure for active and passive 3D structures. The second aim
is the application of this measure in the analysis of global convexity of fitness
landscape for different optimization tasks, such as maximizing the velocity of
active 3D structures, and maximizing the height of passive 3D structures. The
results of such analyses may help design genetic representations and operators
that will increase the efficiency of solving the demanding tasks of evolutionary
design.

1.1 Related work

Global convexity can be assessed using the fitness–distance correlation (FDC),
i.e., the correlation between the fitness value and the distance (i.e., dissimi-
larity) between solutions – for example the distance to the global optimum,
if it is known. Fitness–distance correlation analysis was introduced by Jones
and Forrest as a method of investigation of the difficulty of optimization prob-
lems [17]. As previously mentioned, global convexity depends on the specific
distance (dissimilarity) measure used. Therefore, the FDC analysis using differ-
ent dissimilarity measures can be employed to identify properties of solutions
that correlate with their fitness, and then to devise genetic operators that pre-
serve such properties. One example of such an operator is the distance-preserving
crossover (DPX). Such an operator attempts to guarantee that the distance be-
tween each parent solution and a child solution is not higher than the distance
between parents [18,19]. So far, global convexity tests were successfully used
for the development of distance-preserving crossover operators in combinatorial
optimization problems [20,21,22].

Apart from the FDC analysis, dissimilarity measures for 3D structures have
plenty of other applications [10], including automated classification, discovering
clusters in solutions, population analysis and inferring dendrograms. Dissimilar-
ity measures for 3D structures already exist in many domains such as computer
vision [23], bioinformatics [24] or chemical informatics [25], but they are usually
too domain-specific to be applied to comparing arbitrary 3D designs. Addition-
ally, the measure should take into account not only the “body” of the solution,
but in the case of active structures, also their control systems. Moreover, the al-
gorithm for calculating the measure needs to be efficient to handle complex 3D
structures. The dissimilarity measure introduced by Komosinski and Kubiak [26]
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was designed to fulfill these demands, however it has a number of disadvantages
described in Sect. 2.3.

2 Dissimilarity measure for active and passive 3D
structures

The dissimilarity measure introduced in this paper was designed to overcome the
problems of the simpler measure devised earlier [26]. The calculation algorithms
of both measures, as well as a model of a 3D structure required by the measures,
are described in the following sections. The proposed measure has been imple-
mented in the Framsticks simulation environment [27,9] and the C++ source
code is available as a part of the Framsticks SDK [28]. The value calculated by
the algorithm for two structures is interpreted as follows:

– 0 means that both structures are identical (i.e., no dissimilarity),
– a positive value reflects the dissimilarity (the “distance”) between both struc-

tures.

2.1 3D active structure model

Fig. 2: Sample 3D structures compatible with the model considered in this work.
Left: a close-up of two structures with visible vertices and edges. Right: an 8× 8
sample of structures from the w+s+o test set described in Sect. 2.5.

The 3D structures considered in this work are modeled as undirected graphs
(Fig. 2), and such structures are simulated in the Framsticks environment [27,9].
The structures can be either active or passive. Active structures are equipped
with working control units – artificial neurons – including sensors and effectors.
The neurons may be optionally attached to vertices. Therefore, each vertex in a
structure can be described with the following properties:
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– its degree (i.e., the number of edges incident to the vertex),
– the number of neurons attached to the vertex,
– its position in the three-dimensional coordinate system.

2.2 Dissimilarity measure assumptions

The measure should allow for the comparison of different properties of any two
3D structures. Therefore, the value of the measure consists of four components:

– dV – the absolute difference in the number of vertices in both structures,
– dD – the absolute difference in the degree of matched vertices,
– dN – the absolute difference in the number of neurons attached to the

matched vertices,
– dG – the Euclidean distance between matched vertices.

Since in the simplest case these components are aggregated into a single value
using the weighted sum, the user can adjust the importance of each component
by setting the weight (wV , wD , wN and wG) of this component to a value higher
than or equal to zero.

If the wG weight is higher than zero, the two structures should be aligned in
3D space before calculating Euclidean distances between matched vertices. For
this purpose, a multidimensional scaling [29] procedure (MDS) has been used
for each structure separately. After the application of this procedure, centers of
both structures are located in the origin of the coordinate system. The axis with
the highest variance of coordinates is chosen as the first axis of the structure,
and the axis with the second highest variance of coordinates is chosen as the
second axis of the structure.

Since a standard MDS procedure takes as an input the distance matrix based
on original vertex coordinates, vertex degrees are not considered during spatial
alignment of structures. As a result, vertices with a similar vertex degree in both
structures may not be aligned properly. To overcome this problem, instead of the
standard MDS procedure, we use the weighted MDS (wMDS). In wMDS, during
the alignment, the distance matrix between vertex coordinates is weighted using
vertex degrees as weights. In this way, the information about vertex degrees
is incorporated and exploited during the alignment process – this process uses
richer information which ultimately leads to better alignment of the structures.

2.3 The original dissimilarity measure: vertex degree order and
greedy matching

The dissimilarity measure proposed earlier [26] is a heuristic. Its algorithm can
be divided into three main parts:

– Alignment of the structures,
– Construction of the matching function,
– Dissimilarity calculation.
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The alignment procedure has been described in Sect. 2.2. The main part of
the algorithm is the construction of the matching function. In order to build
the matching, the vertices of each structure are sorted according to the vertex
degree, and then according to the number of neurons within the groups of the
same vertex degree. The matching procedure starts with vertices with the highest
vertex degree in both structures, and tries to find the pairs of matching vertices.
The within-group matching ends when there are no unmatched vertices with
a given degree in one or both of the structures. Then the algorithm proceeds
to handle the group of vertices with the second highest vertex degree, and then
continues and handles groups with lower and lower vertex degree. Within groups
with the same vertex degree, the matching is built according to the minimum
distance calculated as

wD · dD(vi1, vj2) + wN · dN (vi1, vj2) + wG · dG(vi1, vi2)

where weight wx corresponds to the x component of the measure, vi1 denotes the
i-th vertex of the first structure, and vj2 denotes the j-th vertex of the second
structure. For details of the procedure, see [26].

One problem of this measure is the fixed order in which the vertices are
matched. Even if the weight of the dD component is equal to zero, the matching
procedure still starts from the vertices with the highest vertex degree and follows
the logic described above. Another issue with the matching procedure is that it is
a greedy algorithm. It always chooses the matching which provides the minimal
distance between currently considered vertices, however this choice does not
have to result in the minimal overall distance between complete structures. This
algorithm will be referred to in the following sections as dissimDegGreedy (vertex
degree order and greedy matching).

2.4 The improved dissimilarity measure: flexible criteria order and
optimal matching

The dissimilarity measure proposed in this paper overcomes the disadvantages
of dissimDegGreedy described above. The calculation of the improved dissimilarity
measure is also preceded by the alignment procedure described in Sect. 2.2. In
order to avoid the greediness of the matching procedure, the Kuhn-Munkres
algorithm [30,31] (also known as the Hungarian algorithm) is applied. The goal
of the matching procedure is to find the matching of vertices that will minimize
the overall distance between two structures. The overall distance consists of two
components: the sum of the distances between matched vertices, and the penalty
for the unmatched vertices (only present in the case of the structures differing
in the number of vertices). The distance between each pair of matched vertices
is calculated as follows:

distvi1vj2 = wD · dD(vi1, vj2) + wN · dN (vi1, vj2) + wG · dG(vi1, vi2)

The penalty for each unmatched vertex vi is the sum of the following components:
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– penaltyD(vi) = wD · vertex degree(vi),
– penaltyN (vi) = wN · number of neurons(vi),
– penaltyG(vi) = wG · distance to the origin(vi).

In order to take the penalty into account during the Hungarian matching pro-
cedure, additional rows or columns are created in the distance matrix for the
smaller structure. Such additional rows or columns are filled with the penalty
for the inability to match the parts of the structure with more vertices. This dis-
similarity measure will be referred to as dissimFlexOpt (flexible criteria order and
optimal matching). The matching procedure along with the distance calculation
procedure is outlined in Listing 1.1.

GS = s t r u c t u r e with more v e r t i c e s (” g r e a t e r ”)
SS = s t r u c t u r e with l e s s v e r t i c e s (” sma l l e r ”)
nGreat = vert i ce s number (GS)
nSmall = vert i ce s number (SS)
d i s t m a t r i x = matrix ( s i z e =(nGreat , nGreat ) )
f o r i in range (0 , nGreat −1):

f o r j in range (0 , nGreat −1):
i f i >= nSmall :

d i s t m a t r i x [ i ] [ j ] = pena l ty (vGSj )
e l s e :

d i s t m a t r i x [ i ] [ j ] = d i s t (vSSi ,vGSj )
matched = HungarianAlgorithm ( d i s t m a t r i x )
d i s t ance =

∑
i

∑
j

d i s t ( matched (vSSi ,vGSj ) )

d i s t ance = d i s t ance + d i f f e r e n c e i n u n a t t a c h e d n e u r o n s (GS, SS)
d i s t ance = d i s t ance + wV · dV (GS, SS)

Listing 1.1: The outline of the dissimFlexOpt vertex matching and dissimilarity
measure calculation algorithm.

The measure described above is very general and can be used for calcula-
tion of dissimilarity of any 3D objects that can be represented as undirected
graphs. Furthermore, dissimFlexOpt is more flexible than dissimDegGreedy . In
dissimDegGreedy , some of the components were more important than others in-
dependently of the weight values – vertex degree and neuron count were always
used to sort the vertices before matching. In dissimFlexOpt , all of the compo-
nents are processed in a uniform way. This allows any properties of the vertices
in the model to be easily incorporated into dissimilarity calculation as subsequent
measure components. The proposed measure will be referred to in the follow-
ing sections as dissimFlexOpt (flexible criteria order and optimal matching). The
matchings of the same two 3D structures obtained using dissimDegGreedy and
dissimFlexOpt algorithms are compared in Fig. 3.

2.5 Comparison of dissimilarity measures

Both measures, the original one (dissimDegGreedy) and the one introduced in this
paper (dissimFlexOpt), were compared on four different sets of three-dimensional
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(a) dissimDegGreedy= 51.55 (b) dissimFlexOpt= 42.58

Fig. 3: The matching and dissimilarity between the same two structures ob-
tained using dissimDegGreedy and dissimFlexOpt measures with all the weights
equal, wV = wD = wN = wG = 1. The dissimDegGreedy matching procedure (a)
starts from vertices with the highest vertex degree in both structures. Therefore,
vertices with the degree of 4 from the bottom structure have to be matched with
vertices with the degree of 2 from the top structure, and then vertices with the
degree of 2 from the bottom structure have to be matched with vertices with the
degree of 1 from the top structure. In the case of dissimFlexOpt (b), the matching
procedure tries to find the matching that minimizes the total dissimilarity value.

models using three evaluation criteria. For each of the test sets, the dissimilarity
was calculated for all pairs of the structures in the set – for example, for a set
with 400 structures, the dissimilarity was computed 400× 400 = 160 000 times.

Test sets. Four test sets of 3D structures were used. Three of these sets (walk-
ing, swimming and other) are sample sets provided in the Framsticks distribu-
tion [27] and consist mostly of structures designed by humans, or pre-designed
manually and then evolved to meet some specific goal. The fourth set (best400 )
is the result of an evolutionary experiment, with four fitness criteria and 100
structures optimized for each criterion using evolutionary algorithms [10] (the vi-
sualization of this experiment is available at https://www.youtube.com/watch?
v=lo4vL7gOuYk). The test sets differ in the number of structures they contain
and in the size (i.e., the number of vertices) of the structures. The distribution
of the structure size in each test set is shown in Fig. 4.

Comparison criteria and results. Both measures – dissimDegGreedy and
dissimFlexOpt – were compared using three criteria; these criteria are described
below.

Triangle inequality violation. It is desirable for a dissimilarity measure to be a
metric – with this property, it is possible to construct a metric space for the set

https://www.youtube.com/watch?v=lo4vL7gOuYk
https://www.youtube.com/watch?v=lo4vL7gOuYk
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Fig. 4: The distribution of the number of vertices in 3D structures for each test
set. The number in parentheses after the name of the test set indicates the
number of structures in that set.

of analyzed structures. In order to be a metric, the measure must satisfy the
conditions of non-negativity, identity of indiscernibles, symmetry, and triangle
inequality. It can be easily shown that both of the analyzed measures satisfy the
first three conditions.

The satisfiability of the triangle inequality condition has been tested compu-
tationally. For this purpose, the three sets: walking, swimming, and other were
merged into one set denoted as w+s+o. In order to test the influence of different
components and their combinations on the triangle inequality violations, all pos-
sible combinations of binary weights: wV ,wD ,wN ,wG ∈ {0, 1} were tested. The
results of the investigation on triangle inequality are presented in Table 1. It can
be seen that the number of weight sets for which triangle inequality was violated
is lower for dissimFlexOpt . Also, the percentage of the cases for which violation
occurred is significantly lower for dissimFlexOpt than for dissimDegGreedy . For the
cases in which only one component of the dissimilarity measure was taken into
account, violations occurred only for the geometrical distance component using
dissimFlexOpt .

It is worth noting that for dissimFlexOpt , the number of non-zero triangle
inequality violations is the lowest when all four components of the dissimilarity
measure are taken into account. These results suggest that the number of vio-
lations can be decreased by using all four components of the measure, i.e., by
exploiting all the information about compared 3D structures the measure can
access.

Computational cost. The results of time measurement for calculation of the full
square distance matrix for different test sets are shown in Fig 5. In all cases, the
calculation time for dissimFlexOpt is higher than for dissimDegGreedy . The ratio
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Test set wV wD wN wG dissimDegGreedy [%] dissimFlexOpt [%]

w+s+o

0 0 1 0 0.479 0.0
0 0 0 1 0.158 0.004
1 0 1 0 0.271 0.0
1 0 0 1 0.154 0.0
0 1 1 0 0.131 0.0
0 1 0 1 0.123 0.010
0 0 1 1 0.106 0.018
1 1 0 1 0.115 0.021
0 1 1 1 0.090 0.011
1 1 1 0 0.130 0.0
1 0 1 1 0.102 0.013
1 1 1 1 0.089 0.003

best400

0 0 1 0 1.503 0.0
0 0 0 1 2.604 0.810
1 0 1 0 1.112 0.0
1 0 0 1 2.549 0.807
0 1 1 0 0.928 0.0
0 1 0 1 2.352 0.794
0 0 1 1 1.438 0.267
1 1 0 1 2.566 0.788
0 1 1 1 1.390 0.248
1 1 1 0 0.927 0.0
1 0 1 1 1.510 0.257
1 1 1 1 1.277 0.246

Table 1: The percentage of triangle inequality violations for the original and
the new dissimilarity measure and for different sets of weights. Combinations of
weights for which there were no triangle inequality violations in both measures
are not shown.
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Fig. 5: Time of the full distance matrix calculation for each of the four test sets
and both dissimilarity measures. All tests were performed on a computer with
the Ubuntu Linux OS, the Intel Core i5-4200U processor and 4 GB of RAM.
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of both calculation times is the highest for test sets containing structures with
higher number of vertices – the calculation time for dissimFlexOpt is almost 4
times longer for other, and almost 3 times longer for swimming test set.
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Fig. 6: The fraction of negative (black) and zero (gray) differences be-
tween the new and the previous measure for different test sets and differ-
ent weight values wV , wD , wN , and wG . The differences were calculated as
dissimFlexOpt−dissimDegGreedy .

Values of dissimilarity measures. Both measures were also compared in terms of
the raw distance (dissimilarity) value – lower dissimilarity values suggest that the
measure is able to find a better match between the structures. For this purpose,
again, the three test sets: walking, swimming and other were merged into one set
denoted as w+s+o. The number of negative, zero, and positive differences was
calculated for distance matrices obtained using dissimDegGreedy and dissimFlexOpt

with different weight combinations.

The results of this analysis are shown in Fig. 6. It can be seen that there were
no positive differences, which means that distances obtained using dissimFlexOpt

were always equal or lower than the distances obtained using dissimDegGreedy .
Distances obtained using both measures are the same only when the dG and
the dN components are not taken into account. The number of negative differ-
ences is the highest when the dG is included as a component of the measure.
These results demonstrate that dissimFlexOpt can yield lower distance values
then dissimDegGreedy in terms of the dG and the dN components, and such lower
dissimilarities are the consequence of a better matching.
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3 Fitness–distance correlation analysis

As mentioned in Sect. 1.1, the value of the fitness–distance correlation can be
used to assess the global convexity of the fitness landscape. The results of the
global convexity analysis can later be used to guide the design of efficient genetic
representations and operators.

Both dissimilarity measures, dissimDegGreedy and dissimFlexOpt , were used for
fitness–distance correlation analysis, for different fitness functions, as shown in
Fig. 7. Since the global optimum is not known and there are many local optima,
mean distance to structures with the same or better fitness was computed, in-
stead of the distance to the optimal structure. The analysis was conducted on
four subsets of best400, each consisting of 100 structures evolved using one of
the following maximized fitness functions:

– velocity on land (active structures: neural network activated),

– velocity in water (active structures: neural network activated),

– height (passive structures: no neural network),

– height (active structures: neural network activated).

For velocity on land, all the correlations were negative, meaning that the
structures most similar to better or equally good structures (in terms of fitness)
had in general higher fitness. This was the case for all three components, with the
lowest correlation strength for dN and the highest for dD . This result suggests
that velocity on land is correlated the most with the dissimilarity of the vertex
degree.

For velocity in water, negative correlations were even stronger for dG and
dN , showing correlation of dissimilarity in terms of these components with the
fitness value. Surprisingly, for the dN component, weak positive correlations were
obtained.

Even more surprisingly, for maximizing the height of passive structures, high
positive correlations were revealed for the dG and the dD components (since
passive structures were considered, the dN component was not taken into ac-
count). In this seemingly simple task, no global convexity was discovered. On
the contrary, the more dissimilar the structure was to the better or equally fit
structures, the higher was its fitness. This suggests the need to develop another
dissimilarity measure (or another component of the measure) to help improve
the efficiency of optimizing the height of passive structures. Such improvement
would be possible if properties considered in the measure whose dissimilarity
correlates with fitness were preserved by genetic operators that modify solutions
during optimization.

For maximizing the height of active structures, moderate to high negative
correlations were obtained. One difference is the correlation for the dG com-
ponent using dissimDegGreedy , for which the correlation strength is near zero.
Interestingly, correlation is significantly stronger for the dG component using
dissimFlexOpt .
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Fig. 7: The relationship between fitness value of the structure and a mean dis-
tance (dissimilarity) to structures with the same or better (i.e., higher) fitness
value. Results for each component of the dissimilarity measure are presented
separately on each plot, except for the dV component, which is not taken into
account. Spearman’s rs rank correlation coefficient values are shown in the legend
for each of the components. Results obtained using dissimDegGreedy are shown in
the left column, and results obtained using dissimFlexOpt are shown in the right
column.
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4 Conclusions and further work

The dissimFlexOpt measure introduced in this paper is an improvement over
dissimDegGreedy in terms of the satisfiability of triangle inequality. It is not per-
fect, however – violations of this important property still occur, albeit very rarely.
The measure can be further improved by eliminating the triangle inequality vio-
lation. Results of the analysis suggests that the geometrical distance component
may be the main source of the violations. Therefore, the solution to this problem
could be the change of the geometrical distance penalty for unmatched vertices.
However, the penalty for the geometrical component is not so obvious as for the
remaining components of dissimilarity measures. Currently, the penalty for the
geometrical component is calculated as the distance of the unmatched vertex
to the origin of the coordinate system; nonetheless, there are other possible ap-
proaches, some of which may fulfill the satisfiability of the triangle inequality
condition.

In terms of the measure value, dissimFlexOpt introduced in this work is also an
improvement over dissimDegGreedy . The change of a greedy method of matching
to the optimal matching lowered primarily the value of the geometrical distance
component. Lower measure value indicates that dissimFlexOpt is able to find a
better matching of both compared structures than dissimDegGreedy . However, the
price for those improvements is the increase in computational cost. While the
execution time is still reasonable for sets containing structures with a moderate
mean number of vertices, it may be prohibitive for data sets comprised of very
complex structures.

Another advantage of the dissimFlexOpt measure is its flexibility. The earlier
matching procedure based on the sorting of the vertices according to their vertex
degree and neuron count was replaced by the Hungarian algorithm. Because of
this change, all of the components of the dissimilarity measure are now processed
uniformly. In consequence, the measure can take into account any property of
the vertices and the influence of this property on the dissimilarity value will be
proportional to the corresponding weight.

The fitness–distance correlation analysis revealed global convexity for most
of the considered optimization tasks, as long as the vertex degree and the geo-
metrical distance components were employed in the dissimilarity measure. While
these results are promising, some unexpected relationships were discovered – like
positive correlation between dissimilarity of the number of neurons and the ve-
locity in water, or strong positive correlation between geometrical dissimilarity
and the height of passive structures. These discoveries indicate that the devel-
opment of other dissimilarity measures for 3D structures would be beneficial,
as such measures would likely help identify properties of the optimized struc-
tures that yield high FDC. Incorporating such properties in the development
of genetic representations and operators will in turn increase the efficiency of
the optimization process in the area of evolutionary robotics and evolutionary
design.
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