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ABSTRACT
Convection selection in evolutionary algorithms is a method of
splitting the population into subpopulations based on the fitness
values of solutions. Convection selection was previously found to
be superior to standard selection techniques in difficult tasks of
evolutionary design. However, reaching its full potential requires
tuning of parameters that affect the performance of the evolution-
ary search process. Performing experiments on benchmark fitness
functions does not provide general knowledge required for such
tuning. Therefore, in order to gain an insight into the link between
the characteristics of the fitness landscape, the parameters of the
selection technique, and the quality of the best found solutions,
we perform an analysis based on the NKq model of rugged fitness
landscapes with neutrality. As a result, we identify several rules that
will help researchers and practitioners of evolutionary algorithms
adjust the values of convection selection parameters based on the
knowledge of the properties of a given optimization problem.
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1 INTRODUCTION
In recent papers, convection selection (a meta-selection scheme
first introduced in [14]) was shown to exhibit superior perfor-
mance when compared to both a classical, single population evo-
lutionary algorithm [12], and a multipopulational island model
evolutionary algorithm [11]. These comparative experiments were
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performed on difficult tasks of evolutionary design and on se-
lected CEC2005 benchmark functions [19]. The comparisons were
parameter-agnostic, i.e., conclusions were based not on arbitrarily
chosen parametrizations of these algorithms, but rather on the best
parametrizations found across a wide range of possibilities.

As expected, it was simultaneously shown that performance of
convection selection can depend on the selected values of parame-
ters of this technique, and no single combination of parameters can
serve as a silver bullet which would fit all problems. As convection
selection is related to the island model, its parameters include the
number of subpopulations and the frequency of communication be-
tween them. Similar selection techniques include FUSS [16] which
is virtually parameter-free, and much more sophisticated HFC [21],
both of which are discussed later in more detail.

It holds under the No Free Lunch Theorem [22] that incorpo-
rating the knowledge about the structure of the problem into the
algorithm, which can be achieved by tuning its parameters, can
improve the performance of this algorithm. It is therefore crucial to
obtain knowledge about the correlations between the parameters
of the algorithm, the characteristics of the fitness landscape, and
the performance of the algorithm in a given optimization problem.
In order to learn about such correlations, it is necessary to eval-
uate the performance of the algorithm on a set of problems that
vary in their characteristics in a controllable way. To this end, we
performed experiments on a set of problems generated with the
NKq model of fitness landscapes [4], which extends Kauffman’s NK
model [9] with neutrality – a property common to many difficult
optimization tasks.

2 CONVECTION SELECTION
Convection selection – as presented in Algorithm 1 – is a tech-
nique in evolutionary algorithms where the population is split into
subpopulations according to fitness values of solutions [11, 12, 14].
Evolution proceeds independently in each subpopulation forM ·S ·R
evaluations in total; in a single-threaded implementation of convec-
tion selection, the currently processed subpopulation changes after
every evaluation, round-robin style. Every M · S · R evaluations,
allM subpopulations, each of size S , are merged together to create
a full population consisting ofM · S solutions, which is then split
again intoM subpopulations according to one of two policies, i.e.,
EqualWidth or EqualNumber :

• EqualWidth. Each subpopulation is assigned a range of fit-
ness values of equal width, i.e., the i-th population is assigned
to range

[
fmin + (i − 1) · fmax−fmin

M ; fmin + i ·
fmax−fmin

M

]
,

where i = [1..M], and fmin and fmax are respectively the
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lowest and the highest fitness value in the current popula-
tion (assuming a maximization problem). Whenever the full
population is split, each solution ends up in a subpopulation
assigned to its corresponding fitness value. Should any sub-
population be empty, it is filled with cloned solutions from
the worse subpopulation.

• EqualNumber. Each subpopulation is assigned a range of fit-
ness ranks within the population of equal width, i.e., the i-th
population is assigned to range ((M − i) · S ; (M − i + 1) · S].
When the full population is split, each solution ends up in a
subpopulation assigned to its corresponding rank in the full
population.

Whenever any subpopulation exceeds its size limit, the mini-
mal amount of solutions required to meet the size requirements is
removed from that subpopulation at random.

Algorithm 1: The pseudocode of the Convection Selection
algorithm.
1 function convectionSelection (M, S,R);
Input : subpopulation numberM , subpopulation size S ,

migration period multiplier R
2 count = 0;
3 pop = initialize(size = M · S);
4 subpops = split(pop, number = M);
5 while not stopping-condition do
6 count += 1;
7 currentpop = subpops[count mod M];

// Fill the empty subpopulations with solutions from the
first worse and not empty subpopulation

8 i=1;
9 while size(currentpop) == 0 do
10 currentpop = copy(subpops[(count−i) mod M]);
11 i += 1;
12 end

13 child = generate_solution(currentpop);
14 currentpop.add(child);
15 subpops[count mod M] = currentpop;

// Every M*S*R evaluations, update the split into
subpopulations

16 if count mod (M · S · R) == 0 then
17 pop = merge(subpops);
18 subpops = split(pop, number = M) ; // EqualWidth or

EqualNumber used here
19 end

// Trim the size of each subpopulation to S
20 for subpop in subpops do
21 if size(subpop) > S then
22 subpop = trim(subpop, size = S);
23 end
24 end
25 end

The idea behind convection selection comes from a simple ob-
servation: in difficult problems, it often happens that in order for a
solution to improve, it must first pass a valley in the fitness land-
scape that corresponds to deterioration in its quality. Classical
selection schemes offer monotonic selective pressure, which dis-
courages the algorithm from investing computation time in testing
solutions which are significantly worse than the rest of the popu-
lation. This in turn leads to a premature convergence to a sub-par
local optimum. In order to avoid that problem, the algorithms most
often employ some mechanism in order to increase the diversity of
solutions, which should facilitate escaping from local optima. Some
of the more popular examples of such mechanism are fitness shar-
ing [5, 7] and crowding [2, 6, 17], none of which however directly
facilitates crossing valleys in a fitness landscape.

There exist already some modifications of evolutionary algo-
rithms whose purpose is to spread the selective pressure between
different levels of fitness, most notable being Fitness Uniform Opti-
mization (FUSS) [16] and Hierarchical Fair Competition (HFC) [21].
Both of these algorithms share similarities with convection selec-
tion, however there are also some meaningful differences between
them. While FUSS uses a single population of solutions, convection
selection supports a number of subpopulations coexisting simulta-
neously. Additionally, whereas FUSS has no direct way to introduce
and control selection pressure in the population, convection se-
lection can be coupled with any traditional selection scheme (a
modified version of FUSS, FUDS [8], does however allow such
control).

Comparing convection selection with HFC also reveals a num-
ber of differences. Although both HFC and convection selection
maintain a number of fitness-based subpopulations, they differ in a
way solutions can migrate between these subpopulations. While
in convection selection each subpopulation evolves fully indepen-
dently between the merge/spilt events, in HFC solutions that exceed
some threshold fitness level are moved from a population into a
buffer, where they wait for the next migration event. Addition-
ally, solutions in HFC can only migrate “upwards” in the chain of
subpopulations, while the algorithm fills the weakest subpopula-
tion on a regular basis with randomly generated new solutions.
These differences suggest that while convection selection focuses
on facilitating the traversal of valleys in the fitness landscape, HFC
focuses on continuously incorporating new genetic material into
the population.

3 NKQ MODEL OF FITNESS LANDSCAPES
The NK model of fitness landscapes was first introduced by Stu-
art Kauffman in the context of theoretical biology – specifically,
the maturation of the immune response [9]. Kauffman’s model
describes a family of rugged fitness landscapes defined by two pa-
rameters N and K . The parameter N defines the size of the problem
(and therefore the dimensionality of the landscape), while the pa-
rameter K defines the degree of epistasis present in the problem
(and therefore the ruggedness of the landscape). The fitness value f
for any point in the landscape (i.e., for any solution of the problem)
can be computed as a sum of N fitness contributions (value of each
depending on a locus-specific multiplexer-like function fi ), a gene
at the given locus, and genes at K − 1 other associated loci.
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Although it was first introduced in the context of biology, due
to its universal structure the NK model was quickly adopted by
researchers in the fields of evolutionary algorithms. Because of
its simplicity, clear mathematical structure, and the fact that – in
general – decision versions of optimization problems based on the
NK model are NP-complete [23], the NK model is often used as a
benchmark. It is also used as an object of theoretical analysis in
hopes of gaining knowledge about general characteristics of fitness
landscapes [10, 20] and the ways the optimization algorithms search
through these landscapes [18].

Despite its popularity, it has been noticed that the NKmodel does
not capture an important feature of many fitness landscapes – both
biological, and those based on optimization problems – namely,
neutrality. It has been shown that the presence of neutrality in a
genotype-phenotype mapping increases evolvability of the popula-
tion [3]. Such partially neutral fitness landscapes contain structures
such as plateaus or neutral networks, which allow populations to
diversify their genetic material through random genetic drift while
simultaneously maintaining high fitness. This facilitates the discov-
ery of new, beneficial mutations, helps population avoid becoming
stuck in a local optimum, and improves its adaptation to changes
in the environment.

In an effort to incorporate the phenomenon of neutrality to Kauff-
man’s NK model, extensions of the model were presented, most
notably NKq [4] and NKp [1] models. The NKqmodel [4] introduces
neutrality by quantizing contributions of each gene to q distinct
levels. In effect, the fitness landscape becomes more terraced. The
NKp model [1] sets the contribution of random genes to zero with a
probability p. This also results in a more neutral landscape, however
its characteristics are more extreme than in the case of NKq – in
particular, a significant fraction of mutations becomes deleterious,
especially for high values of p, and when approaching best fitness
values [4]. Because of that, the neutrality present in the NKp model
might have more ambiguous effect on the evolvability of the popu-
lation. This is why we decided to perform experiments using the
NKq model of fitness landscapes. Still, results obtained with the
NKp model would be very interesting, especially since the NKp
model may have similar characteristics to the previously considered
difficult tasks of evolutionary design [13].

4 EXPERIMENTAL SETUP
The experiments were implemented and carried out in the Fram-
sticks environment [15]. We have performed 15 independent evolu-
tionary runs with 1 000 000 evaluations each, for every combination
of the parameter values enumerated below. This resulted in 21 870
independent evolutionary runs in total.
Evolutionary algorithm parameters were:

• tournament size t ∈ {2, 5},
• subpopulation numberM ∈ {5, 10, 25},
• subpopulation size S ∈ {10, 20, 50},
• migration period multiplier R ∈ {2, 10, 50}.

NKq model parameters were:

• genotype length N ∈ {20, 50, 100},
• the degree of epistasis K ∈ {2, 5, 8},

• the number of available levels of contribution q ∈ {2, 10,∞},
where ∞ means continuous, non-quantized values of fitness
contributions.

We have used the implementation of convection selection as de-
scribed in Sect. 2, with the addition of elitism. When performing
random deletion within a subpopulation, we always ensured that
the single best solution from that subpopulation is never deleted.
Such elitism was used because initial experiments demonstrated
that it can improve the performance of the search process, with an
added benefit of guaranteeing a non-decreasing fitness of the best
solution in the population.

Half of the new offspring solutions were created by the mutation
operation, and half of them resulted from the crossover operator.
When applying a mutation operator to a genotype, we guaranteed
that the value of at least one bit was flipped. After flipping the first
(guaranteed) bit, every other bit in the genotype was flipped with
the probability of 1

N , where N was the length of the genotype.
In our experiments, the adjacent version of the NKq model was

used in which fitness contribution linked with a locus depended on
the value of the gene at that locus and K following loci. Although
in evolutionary algorithms we always want to exploit the locality
of gene interactions to facilitate the search process (and therefore
two-point crossover is preferred over bit-wise crossover), in many
optimization problems it is difficult to assure such locality. As the
goal of our experiments was not to solve the problems generated
by the NKq models per se, but rather to find useful dependencies
between the beneficial values of algorithm parameters and the
characteristics of the optimization problem, we decided to use bit-
wise crossover to ensure that the locality of gene interactions cannot
be abused by the search process.

Since finding the optimal value in NKmodels is in general consid-
ered to be an NP-hard problem, in order to facilitate normalization
of the fitness values returned by the algorithm, we restricted our
experiments to relatively low values of the degree of epistasis K .
This allowed us to compute the exact global minima and maxima
for each considered fitness landscape [23]. After normalization,
fitness values are in the range [0.0, 1.0], where 0.0 corresponds to
the lowest, and 1.0 – to the highest value obtainable for a given
problem.

5 ANALYSIS
Due to high dimensionality of the parameter space used in our
experiments (seven parameters in total), paired up with parame-
ters divided into two separate groups, it would be difficult to find
regularities and rules through visual examination of the entire set
of results. For this reason we decided to use linear regression to
search for simple regularities.

The analysis involved two stages of multiple linear regression.
In the first stage, multiple linear regression was performed sep-
arately for each combination of the NKq model parameters. The
parameters of the algorithm were used as independent variables,
and the highest fitness value found by the algorithm, averaged over
15 runs, was used as a dependent variable. The results of the first
stage of regression provide coefficients for each of the parameters
of the algorithm. These coefficients can be then interpreted as a
general gradient in which parameters of the algorithm should be
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N 20 50 100
K q

2 2 0.299 0.758 0.897
2 10 0.435 0.833 0.920
2 ∞ 0.344 0.793 0.908
5 2 0.255 0.837 0.841
5 10 0.237 0.802 0.877
5 ∞ 0.273 0.711 0.914
8 2 0.129 0.778 0.854
8 10 0.030 0.753 0.876
8 ∞ 0.069 0.747 0.866

Table 1: R2 values for the regressions of fitness (first stage)
after 100 000 evaluations. R2 values for other lengths of evo-
lution exhibit similar patterns, although generally R2 de-
creases the longer the evolution.

changed in order to improve the performance of the algorithm for
a given parametrization of the NKq model. Therefore, one could
say that these coefficients correspond to a certain “goodness” of
the parameter. For example, should the coefficient for the number
of subpopulations M be equal to 0.001, that would mean that by
changing M from 10 to 25 one should expect the fitness of the
solution found by the algorithm to increase by 0.015.

In the second stage of the analysis, we have used the algorithm
parameter coefficients from the first stage (their “goodness”) as
a dependent variables, and performed – once more – a multiple
regression for each algorithm parameter separately. This time, the
parameters of the NKq model were used as independent variables.
Coefficients for these parameters (we shall call them “goodness
correlation coefficients” for the remaining part of the paper) should
reveal how the goodness of each parameter of the algorithm changes
as the characteristics of the fitness landscape is changed. For ex-
ample, if the coefficient for the degree of epistasis K were equal to
−0.0003 for the number of subpopulationsM , that would mean that
increasing K by 10 would decrease the goodness of M by −0.003.
This in turn would mean that if, for a lower degree of epistasis,
increasingM was beneficial (as in the previous example where it
led to the increase in fitness by 0.015), it could be in fact detrimental
for higher epistasis; using data from the previous example, it would
lead to the decrease in fitness by 0.03. In general, it can be assumed
that the positive goodness correlation coefficient indicates that the
optimal value of the parameter of the algorithm increases as the
value of the parameter of the fitness landscape increases. In the
case described above, the negative goodness correlation coefficient
suggests that the optimal value ofM decreases as K grows. Alter-
natively, a positive value of the goodness correlation coefficient
might imply that the magnitude of the effect the parameter of the
algorithm has on fitness grows across the board as the value of the
parameter of the fitness landscape increases, without the optimal
value of the parameter of the algorithm actually changing. In this
paper however, we focus on the former possibility.

In the experimental data, we expect not only a lot of nonlinearity
(e.g., a linear increase in the tournament size leads to a sublinear
increase in selective pressure), but also non-monotonicity – each pa-
rameter is expected to have some optimal value, changes to which

const N K q

const 1.06 −1.4e−3 −1.3e−2 −1.4e−5
t 1.3e−3 1.2e−4 −4.2e−4 2.2e−6
S −6.3e−5 −1.0e−5 4.5e−5 1.3e−8
M −3.4e−4 −3.3e−5 1.4e−4 −1.5e−6
R 6.5e−5 2.0e−6 −9.0e−6 −1.9e−7

Table 2: Regression coefficients reflecting the influence of
landscape parameters (columns) on goodness of algorithm
parameters (rows) after 100 000 evaluations. “const” is the
constant term of the regression model.

will lead to a decrease in performance of the algorithm. The value of
∞ for parameter q cannot be properly described with real numbers
– in this case we assumed q = 100, which is a decent approximation
due to the nonlinear nature of this parameter. Because of these
issues, results of this analysis should be taken with caution, espe-
cially if R2 values for the regression model are low, as is the case
for lower values of N and longer evolutionary runs (as shown in
Table 1). Still, this analysis may find some general tendencies and
correlations present in the data; even though the exact values of
the regression coefficients may not be of much use, their signs and
magnitude may indicate a general negative or positive trend, or
lack thereof.

6 RESULTS AND DISCUSSION
Fig. 1 shows average fitness values obtained for each combination
of parameters (excluding the tournament size t ) after 100 000 evalu-
ations. It is clearly visible that most of the variance in fitness values
comes here from the parameters of the fitness landscape, not from
the parameters of the algorithm. This observation is not surpris-
ing, as increasing the size of the problem N and the degree of the
epistasis K makes the problems more difficult, and the solutions
found for more difficult problems are to be expected to be farther
from the global optimum. It is however interesting to note that the
degree of neutrality in a problem does not seem to influence the
difficulty of the problem.

Fig. 2 presents the same data, but this time fitness is normalized
for each parametrization of the NKq model separately. This allows
one to see finer details and the structure of influence the param-
eters of the algorithm have on fitness values. The most obvious
observation is that the gradient of fitness values does not vary a lot
depending on the parameters of the NKq model: generally, lower
sizes (S) and numbers (M) of subpopulations, and longer periods
(R) between mixing events yield higher fitness. This reveals that –
at least for problems generated by the NKq model – it should be
possible to select parameters that provide high performance most
of the time. However, Fig. 3 shows that after 1 000 000 evaluations
this is no longer the case – when evolution runs for a long time, the
effect the parameters of the fitness landscape have on the optimal
values of the parameters of the algorithm is no longer obvious.

Other differences in fitness gradients may be too subtle to be
noticed by eye and may require statistical analysis, as described
in Sect. 5. Fig. 4 shows how the goodness correlation coefficients
for different parameters of the convection selection and fitness
landscapes change in time. The figure omits the scale on the vertical
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Figure 1: A 6Dplot demonstrating 3Dmini-plots with evolutionary algorithmparameters (subpopulation size S , subpopulation
number M , mixing time R) embedded in a 3D plot with the NKq model parameters. Colors reflect fitness values (dark blue is
the lowest, yellow is the highest) normalized using the optimal values. In this plot, tournament size is 2, and the evolutionary
process is visualized after 100 000 evaluations.
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Figure 2: A 6D plot similar to the one in Fig. 1, but here fitness values were normalized independently for every mini-plot (a
given NKq model). The evolutionary process is visualized after 100 000 evaluations.
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Figure 3: A 6D plot similar to the one in Fig. 2, but here the evolutionary process is visualized after 1 000 000 evaluations.

const N K q

const 1.06 −1.0e−3 −1.0e−2 −2.6e−6
t −1.0e−3 6.3e−5 4.0e−5 −4.0e−6
S 5.3e−5 −4.0e−6 4.0e−6 2.0e−7
M 2.8e−4 −1.5e−5 1.7e−5 −1.5e−7
R −3.8e−5 4.0e−6 −5.0e−6 3.5e−7

Table 3: Regression coefficients reflecting the influence of
landscape parameters (columns) on goodness of algorithm
parameters (rows) after 500 000 evaluations. “const” is the
constant term of the regression model.

const N K q

const 1.06 −9.2e−4 −9.2e−3 −1.6e−5
t −1.3e−3 4.3e−5 1.3e−4 −2.4e−6
S 4.1e−5 −2.0e−6 −5.0e−6 2.8e−7
M 2.5e−4 −9.0e−6 2.0e−6 −2.5e−8
R −1.0e−4 4.0e−6 4.0e−6 5.8e−7

Table 4: Regression coefficients reflecting the influence of
landscape parameters (columns) on goodness of algorithm
parameters (rows) after 1 000 000 evaluations. “const” is the
constant term of the regression model.

axis, as the exact values of the parameter goodness correlation
coefficient are mostly irrelevant. This allows for each series to
be scaled differently. For the examples of the exact values of the
goodness correlation coefficients we refer the reader to Tables 2, 3
and 4.

It is worth observing that the goodness correlation coefficients
change dynamically in early evolution, and tend to stabilize as the
evolution continues. As an example, let us consider Fig. 4a, which
shows how the goodness of the parameters changes in time (inde-
pendently of the problem). At the very start the algorithm prefers
many big subpopulations, as the initial best fitness in the population
is strongly correlated with the size of the full initial population. This
preference however reverses very quickly, as the big population
inevitably slows down the otherwise very quick initial increase in
the fitness of the population. After the initial surge, as the opti-
mization becomes more difficult, the process stabilizes with a slight
preference towards the bigger and more numerous populations.
Similarly, although the size of the tournament (and therefore the
selective pressure) has at first no effect on the fitness values (as the
fitness of the initial population is completely independent of the
selective pressure), the high selective pressure quickly becomes an
effective way to increase fitness in the population, only to become
detrimental on longer evolutionary scales, where lower selective
pressure can help avoid becoming stuck in local optima.

Similar analyses can be performed for combinations of the pa-
rameters of the convection selection and the parameters of the
fitness landscape. Below, we will focus on the more interesting
ones.

Fig. 4b shows the effect the increase in the size of a problem
N has on the goodness of parameters of the algorithm. It can be
seen that bigger problems will in general require a higher selective
pressure, a lower number of smaller subpopulations and longer
intervals between the mixing of subpopulations.

An interesting behavior is visible when increasing the level of
epistasis, K , as presented in Fig. 4c. Initially, higher K leads to
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(a) Goodness independent of the parameters of the problem.
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(b) Goodness correlation coefficients dependent onN (the size of the prob-
lem).
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(c) Goodness correlation coefficients dependent on K (the degree of the
epistasis).
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(d) Goodness correlation coefficients dependent on 1/q (the degree of the
neutrality).

Figure 4: Changes of the parameter goodness correlation coefficients (vertical axis) dependent on the parameters of the fitness
landscape in time (horizontal axis, counted as thousands of evaluations of individuals). Each series corresponds to one of the
parameters of the algorithm, and each plot corresponds to one of the parameters of the fitness landscape (or a constant term,
independent of the problem). A positive goodness correlation coefficient of a parameter of the algorithm for a given parameter
of the fitness landscape indicates that the optimal value of the parameter of the algorithm is expected to increase as the value
of the parameter of the fitness landscape increases. The opposite is true for the negative goodness correlation coefficient values.
Zero goodness correlation coefficient suggests that the changes in the value of a given parameter of the fitness landscape have
no effect on the optimal value of the parameter of the algorithm. As the exact values of the parameter goodness correlation
coefficient are mostly irrelevant, the vertical axis has no designated scale and each series is rescaled independently. Examples
of the exact values of the parameter goodness correlation coefficients are shown in Tables 2, 3 and 4.

increased preference of a low selective pressure, short intervals
between mixing events, and a higher number of bigger subpopu-
lations, all of which cause higher exploration of the search space.
For longer evolutionary experiments, this trend reverses – and
less exploratory, more exploitative behaviors are preferred as K
increases. This can be interpreted as a suggestion that while the use
of a higher exploration in convection selection can give one a head

start in difficult problems, on longer time scales higher exploration
does not have to be as useful.

In order to facilitate the interpretation of the results, Fig. 4d
shows the goodness correlation coefficients dependent on 1/q in-
stead of q, as 1/q can be interpreted as the degree of the neutrality
in a problem. This figure demonstrates perhaps the most intrigu-
ing of our results. For most parameters of the fitness landscape,
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the size and the number of subpopulations exhibit a very similar
behavior (which suggests that it is not important how exactly the
entire population is divided into subpopulations, but rather just
how big it is). Here, however, the number of the subpopulations has
a positive (and – eventually – mostly neutral) effect on the fitness
values returned by the search process, while the size of the subpop-
ulations has generally a negative impact on fitness. This suggests
that, at least initially, a higher number of subpopulations facilitates
simultaneous exploration of many different neutral networks. Al-
though initially a high selective pressure has a negative impact on
the search process when the problem exhibits high neutrality, it
eventually becomes preferred over a low selective pressure. This
preference grows as the evolution becomes longer, however after
700 000 evaluations – although still present – it starts to diminish.
This shows that the degree of neutrality may influence the good-
ness of the parameters of the algorithm in a complex way – even
on longer evolutionary time scales.

7 SUMMARY
In this work we studied the relationships between values of the con-
vection selection parameters and the characteristics of the fitness
landscape. The analysis concerned the performance of an evolu-
tionary algorithm in the NKq model. The results of the regression
of fitness (and subsequently the results of the regression of the
coefficients of that regression of fitness) suggest that the increase in
the dimensionality of the problem, N , can lead to higher exploita-
tion of the fitness landscape being favored. On the other hand, the
increase in the level of epistasis K leads to higher exploration being
favored in early stages of evolution, however, as the evolutionary
time passes, this preference is reversed. We have also shown that
the presence of neutral networks in a fitness landscape can have an
interesting, non-obvious effect on the optimal values of the param-
eters of convection selection, and perhaps also on other parameters
of evolutionary algorithms.

Alongside the results described above, the additional value of
the experiments comes from the introduced methodology. We have
performed a linear regression analysis on two levels – first, to assess
the direction of the improvement in the space of the parameters of
the algorithm for the given parameters of the problem, and then
again, based on the coefficients resulting from the first regression,
to capture how the direction of improvement changes as the param-
eters of the problem change. Although the exhaustive exploration
of the vast space of many possible combinations of parameters
is usually a strenuous task, the presented methodology facilitates
the drawing of meaningful conclusions about the interactions be-
tween the parameters of the problem and the parameters of the
algorithm. Such conclusions are more comprehensive than simple
knowledge on how to set reasonable values of algorithm parame-
ters for a given problem. They may also allow to gain an insight
into the way the algorithm performs. The systematic, automated
and quantitative approach offered in this work allows for gaining a
deeper understanding of the behavior of various algorithms, and
for the extrapolation of the observed trends beyond the examined
sets of parametrizations.

The work reported in this paper can be extended in a number
of ways. Higher values of N and K can be tested, which could
strengthen the conclusions from this analysis. The NKp model

could be investigated in addition to NKq, as the former model may
have a more severe effect on the preferred values of parameters of
convection selection.
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