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Abstract. This work presents a biologically-inspired coordination model which asso-
ciates motor actions with visual stimuli. The model is introduced and explained, and
navigation experiments are reported that verify the implemented visual-motor system.
Experiments demonstrate that the system can be trained to solve navigation problems
consisting in moving around a 3D object to reach a specific location based on the vis-
ual information only. The model is flexible, as it is composed of an adjustable number
of modules. It is also interpretable, i.e. it is possible to estimate the influence of visual
features on the motor action.

1   Introduction

In the real world, creatures face a complex, changing environment and need to handle large
amounts of information to survive and reproduce. Robots produced by humans should pos-
sess analogous qualities if we want them to autonomously make decisions and perform suc-
cessfully in natural environments. However, this is not yet accomplished; there is still a
huge difference between efficiency of performance between creatures and modern robots. If
one could develop robots that are as robust, flexible and adaptive as living organisms, a lot
of time and money would be saved that is spent on designing and developing robots that are
highly specialized in performing a specific task in specific conditions. 

One of the factors that play an important role in the success of living organisms is the
way they acquire information from the environment. Their senses are interfaces between
neural  systems and the outer  world.  Living organisms exhibit  a  vast  number of sensor
types, including olfactory, tactile, auditory, visual, electric and magnetic ones. In this work
we focus on visual sensing as the one that provides a lot of information about the environ-
ment and is therefore popular in natural systems and often used in artificial designs. 

In the area of machine vision, problems that are considered are usually related to object
recognition and classification. This work adds the aspect of active exploration of the envi-
ronment based on information that is perceived. The information considered here is visual
and  much more  complex than the  information  perceived by light-following robots  that
mimic simple organisms like Paramecium.

This  paper focuses  on a visual-motor model that facilitates stimulus–reaction perfor-
mance, as it is the basic schema in functioning of living organisms. The stimulus is visual,
and motor reaction is movement of an agent. The purpose of building this biologically-in-
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spired model is twofold. First, it helps in understanding cognitive processes in living organ-
isms. Second, implementations of such models can cope with the complexity of real-world
environments because these models are inspired by solutions that proved to be successful in
nature.

The  experiments  with  visual-motor  model  are  performed  using  simulated,  artificial
agents. The software environment is the Framsticks simulator [1] equipped with a new vec-
tor eye sensor. We consider navigation and target approaching tasks [5] with an agent mov-
ing along a circular path around some scene, observing a three-dimensional object posi-
tioned in the center. The agent decides whether it wants to move left or right, and adjusts
speed of its movement.

Analogously to natural environments, some locations around the object are advantageous
(“life zones” that living organisms try to reach) while others are adverse (avoided “death
zones”). The goal for the agent is to reach some optimal location (using motor actions)
based only on the visual information that it perceives looking at the object. The visual-mo-
tor system inside the agent needs to be trained to accomplish this task. 

The next section describes in detail the architecture of the visual-motor system, presents
biological inspirations for the model, and introduces its three components: vector eye, vis-
ual cortex, and the motor area. Section 3 reports experiments that were performed, and Sec-
tion 4 summarizes this article and points out directions of future research.

2   Architecture of the visual-motor system

The architecture of the proposed visual-motor system consists of three components –vector
eye,  visual cortex and  motor area. Vector eye captures edges, basic visual elements of a
scene, as observed by an agent. Each edge is characterized by four attributes – length, angle
and coordinates of its center. The attributes of all edges (vector data) are transformed and
aggregated by the visual cortex and fed to the motor area module. The motor area controls
agent’s movements in the virtual environment. The data flow is illustrated in Fig. 1.

2.1   Vector eye

Vector eye is a high-level sensor that provides a list of edges in a scene that are visible from
some location in space. This information is accurate, i.e. it has no noise or imperfections
which would exist if these edges were detected in a raster picture. 

The sensor is implemented in Framsticks, a simulation environment that models three-di-
mensional bodies of agents and their neural control systems [1]. Framsticks allows users to
perform predefined experiments, but the software also supports user-defined experiment
definitions, fitness functions, and neuron types. In this work, only basic Framsticks func-
tionality was used. Features like evolutionary optimization, neural control and embodiment
can be utilized in future research.
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Fig. 1. Data flow in the model of visual-motor system

For the purposes of this work, the agent that travels around the object is considered as a
point equipped with a single eye sensor that observes the centre of the scene and perceives
a singe, three-dimensional shape, as shown in Fig. 2 on the left.

Many simple sensors that are commonly used in robotics (touch, proximity, 3D orienta-
tion) provide single-valued outputs, and therefore do not need special post-processing of
this information in order to make it useful. Vector eye, on the other hand, is a complex sen-
sor that provides a variable amount of information depending on what shape is perceived
and what is the relative position and orientation of the sensor with respect to the shape (see
Fig. 2, right). 
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Fig. 2. Left: three-dimensional shapes used for experiments.  Right: histogram of the number of edges
perceived when observing a sample object from different angles

2.2   Visual cortex

The proposed model of visual cortex is inspired by its biological counterpart. It has been
shown that the primary visual cortex consists of cells that are selectively responsive to dif-
ferent features of the visual stimulus [3, 4]. The cells are called feature detectors because
they analyze the visual image to find specific features (such as a bar or line of a specific
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orientation, length, etc.). For example, there are simple cells for which stimulus that maxi-
mally excites the cell is a line at a specific angle of orientation across the retina. Deviations
from that preferred angle excite the cell less and less, until a line perpendicular to its recep-
tive field has no effect. Complex cells show orientation specificity like simple cells, but ad-
ditionally, they manifest highest sensitivity to stimuli that are lines moving in a specific di-
rection across the visual field. Finally, hypercomplex cells are most sensitive to lines of spe-
cific length and specific angle of orientation that move in a specific direction. 

The idea of feature detectors is employed in the proposed model of visual cortex. Data
coming from the vector eye sensor contain a set of geometrical attributes. Four geometrical
attributes are considered for each edge – angle, length and location (expressed by two coor-
dinates, X and Y). Values of these attributes are transformed by parameterized Gaussian
functions (see Fig. 3). Each function is defined by the following parameters:  modal (pre-
ferred) value of associated attribute that excites the neuron most, extreme value of excita-
tion (positive or negative), and  left and  right standard deviation that shape the function.
The final excitation is a sum of excitations invoked by all edges provided by the vector eye.
This  solves  the problem of aggregating variable numbers  of  attributes (depending on a
number of edges) coming from the eye sensor.

Fig. 3. Parameterized Gaussian function

2.3   Motor area

We started from a simple architecture of the motor component, employing the OWA (or-
dered weighted averaging) method proposed by Yager [6] to aggregate values of features
from the visual cortex. However, this approach was not sufficient as such a component
could not be trained well. Therefore, more OWA modules were added but it was still diffi-
cult to minimize error sufficiently. Finally, neural networks were introduced instead of the
OWA operator, which let the system learn the navigation task successfully.

The motor area component is implemented as a set of motor modules. Each module con-
sists of a two-layer feed-forward neural network. First layer neurons are fully connected to
outputs of the visual cortex (parameterized feature detectors included in Fig. 4). Each neu-
ron is defined by 3+w parameters, where w is the number of inputs (weights) and the other
three parameters characterize the shape of the sigmoid transfer function. Motor output is
computed as the total activation of all motor modules. A behavioral adaptation of an agent
to virtual environment consists in adjusting all the parameters, and can be achieved by vari-
ous optimization and/or learning techniques.
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Fig. 4. The topology of the motor component. Number of parameters shown for each part of a module
(total of 35 parameters per module)

3   Experiments: training and analyzing the visual-motor system

To train the visual-motor system and adjust its parameters, various training methods and
regimes could be used, including evolutionary learning. In this work we employ direct, su-
pervised learning, which is common in nature, where parents teach their children particular
behaviors by rewarding or punishing them for specific actions.

A greedy gradient optimization algorithm [2] was selected as the training method, be-
cause it is relatively simple and quick. In the beginning, all system parameters are initial-
ized randomly, and a small delta value is associated with each parameter. Then, for each
parameter, its delta value is added, and if the new set of parameters is better than the old
one, the new parameter value is accepted and the corresponding delta value is increased.
Otherwise, if this change was not beneficial to the whole system, the old value for the pa -
rameter is retained and the corresponding delta value is negated and decreased. The process
is repeated as long as a change in any parameter causes improvement of the whole system
(i.e. the global error is decreased).

As we expect the agent to be able to navigate to some specified position around the ob-
ject and stop there, its target speed should have positive values for one half and negative
values for the other half of the circular path. The speed should be zero for the specified po-
sition where the agent should stop. There are many speed functions that satisfy these re-
quirements, which causes problems for some learning algorithms, as there is no clear and
continuous information on the expected direction of changes for system parameters.

The obvious error measure is the number of mistakes of the sign of speed value for all
positions around the object. For example, if we assume positive speed as “move right” and
negative speed as “move left”, the total error is the number of locations where the agent
moves in a wrong direction, no matter how fast. Although such error formula is good for
evaluating agent behavior, it is not very helpful during gradient optimization. It only yields
a limited number of discrete values which does not provide sufficient (continuous) informa-
tion to minimize the error, especially that there are many feasible speed functions. For this
reason we decided to use a specific target speed function that the system is trained. It is a
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sinus function, and the zero angle is adjusted to match the specified stop position, where the
target speed is zero.

The first experiment described in this section concerns selecting the appropriate error
function to be minimized, and the second experiment looks for the optimal complexity of
the visual-motor system. Other experiments are mentioned in the last section of this article.

3.1   Error functions for the learning process

For the learning process, some error formula (or fitness function) is needed that will evalu-
ate the visual-motor system configuration by observing the behavior of an agent. As agent’s
behavior is deterministic and fully determined by the visual sensor input, the error function
can take into account a finite set of positions (angles) around the object. Let us introduce
some variables:

xi – target (optimal) speed for image viewed from angle i, i.e.   xi = sin(i)
yi – speed that is generated by the visual-motor system (Fig. 4) for angle i
ei – difference between target and actual speed for angle i;   ei = yi – xi

e  – total error, 
i

iee

In the experiments, the full circle path around the central object was sampled with 100 an-
gles, so i{0, 3.6, 7.2, 10.8, .., 356.4}. The most obvious error function is e, the sum
of individual errors for each angle. However, minimizing this error function resulted in a
ragged speed characteristics (see the white line in Fig. 5). Therefore, another component of
the error function was introduced, the standard deviation  of individual errors ei. Table 1
summarizes results obtained for minimizing three error functions, and Fig. 5 shows speed
characteristics.

The results of this experiment show that minimizing both e and  is advantageous, as it
reduces raggedness of speed that is output by the visual-motor system (compare white and
bold black lines in Fig. 5). Moreover, it helped the hill-climbing learning algorithm to mini-
mize error  e: the value of this error is actually smaller when minimizing  e+ than when
only minimizing e (see Table 1).

Table 1. Performance obtained for various error functions

Minimized error function
Trained performance

e 
e   7.63 0.12

 19.93 0.05

e+  6.17 0.08
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Fig. 5. Speed versus angle of observation

3.2   Adjusting the number of motor modules

The important advantage of the proposed model is its scalability: the number of motor mod-
ules can be easily adjusted to match the difficulty of the problem at hand. To investigate the
influence of the number of modules (each with 35 parameters) on the training ability, we
tested five visual-motor systems. For each system, 20 training experiments were performed,
and the results are summarized in Fig. 6.

Although there is little improvement in the best-trained system among 20 trials, it can be
clearly seen that both average errors and standard deviations are decreasing as subsequent
modules are added. This means that the more modules there are in the system, the better it
can cope with transforming visual stimuli into appropriate motor actions, and the stability
of results increases.

0

20

40

60

80

100

120

1 2 3 4 5

number of modules

e
rr

or

average

minimal

Fig. 6. Error values for visual-motor systems of increasing complexity
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4   Summary and future work

This work presented a biologically-inspired visual-motor coordination model. The model
has been verified in a number of navigation tasks and perceived shapes, and proved to be
flexible and appropriate for such tasks. 

Other interesting experiments with this model were performed as well. It was verified
that minor changes in the shape of the 3D object do not deteriorate agent behavior. Chang-
ing the size of the object, and changing the distance of the agent from the object did not in -
crease the error much, so the system proved to be robust to minor changes in the environ-
ment.  The specific  place where the agent should stop was also set  in various locations
around the central object, and training was always successful. 

An interesting feature of the proposed model is that the system performance can be visu-
alized and interpreted (explained). It is possible to estimate the influence of each edge on
the output speed value, and to visualize it (e.g. edges that cause the agent to move right are
red, and those causing the agent to move left are green). Moreover, it is possible to perform
such analysis for individual sensory features (like edge angles, lengths, etc.).

Future works concern adding more degrees of freedom for the agent (i.e. moving in the
3D space, and near/far from the object), using evolutionary algorithms for more complex
navigation tasks,  introducing more  complex shapes and real-world objects,  using many
eyes and visual-motor systems simultaneously, embodiment of such a system within a vir-
tual body, and finally, perceiving realistic, raster camera images. Most of these experiments
are work in progress.
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