
Introduction to

FRAMSTICKS
Simplified manual

to start evolve your own creature

By Francesco Mondada,
with parts from the official FRAMSTICKS WEB site

made for the course “Bio-inspired adaptive machines” of Prof. Dario Floreano

LSA-EPFL, Switzerland (http://lsa.epfl.ch)

Homepage of framsticks: http://www.frams.poznan.pl/

Content:
1. About this manual 2
2. Evolutionary process 2
3. User interface 3
4. Evolution and simulation parameters 4
5. Genotype encoding 6

1

1. About this manual

The goal of this manual is to give a very short introduction to framsticks, version 2.
To read this manual you should have an very basic idea about:

• Running a windows program
• How genetic algorithms work (very basic concept)
• How a neural network works (very basic concept)

2. Evolutionary process

The evolution procedure implemented in framsticks follows the scheme presented in figure 1.

gene pool

genotype fitnessname

...
selection reproduction

"population" in artificial world

genotype
to creature

decoding

(new)
genotype
and fitness

mutation
or

crossover
or

nothing

Figure 1: Implementation of the evolutionary process in framstick.

The evolutionary process of framstick has the following major elements:
• Gene pool: This is a large (typically >100) number of genotypes and their associated fitness.

Each genotype has a name, generated automatically or manually.
• Selection: Genotypes are selected in the gene pool to be processed and tested. The selection

mechanism can be defined by the user, choosing between random, fitness-proportional (roulette)
or tournament (between 2,3,4 or 5 genotypes). All mechanisms (excepted random) are based on
the fitness stored previously in the gene pool.

• Genetic operators: Framsticks applies randomly one genetic operator on the selected
genotype(s). Probabilities can be set to define how many genotypes will be muted, crossed over
or keeped unchanged.

2

• Artificial world simulation: The resulting genotype is then translated into a creature and
placed in the artificial world. Several creatures can be tested at the same time (this group of
creatures is called “population” in framsticks). During the life of the creature, several parameters
are measured, such as velocity, vertical position, etc. The user can define the fitness by setting
the weight of these parameters in the fitness function. As soon as the creature dies, the fitness is
saved. If the genotype of the creature exist already in the gene pool, its fitness is updated using
the new result of the simulation. If the creature is a new one, genotype and fitness are introduced
in a new line of the gene pool. If the size limit of the gene pool is reached, a genotype is deleted
using a mechanism defined by the user (randomly, inv-proportional to the fitness or only the
worst). As soon as a creature dies, a new one is introduced in the artificial word.

3. User interface

Figure 2: The five main windows of the interface.

On the interface, five main windows allow the control of the evolution:

• The main control window, number 1:

The red arrow allows to start/stop the simulation. The other icons give access to the parameters
of the evolution, statistics and visualisation. Only the parameters of the evolution (“x=”) should
be modified. On the right the number of simulation steps is displayed.

3

• The gene pool window, number 2:

This window displays all genotypes and related information, including names and fitness. You
can load examples of genotypes from “walking.gen” or other .gen files. You can select a genotype
clicking on it. When a genotype is selected, body and brain of the creature are displayed in
window 4. Double-clicking on a genotype, a window appear showing the detailed data of the
genotype, allowing modification, comments etc, as following:

Six buttons on the left of window 2 allow to create/copy/edit/etc the genotype. The last button
(simulate) allows the direct simulation of the selected creature in the artificial world.

• The population window, number 3:

This windows displays the creatures under test in the artificial world. Selecting a creature you
can observe in detail the creature in the artificial world (window 5) and its body and brain are
displayed in window 4. The refresh rate of the window (1:100 in this example) can be reduced to
speed up simulation.

4

• The body and brain window, number 4:

This window shows the body and brain of the selected creature. Small arrows (top left) allow the
user to access to a local menu, useful for instance to set openGL (3D) visualisation.

• The artificial world window, number 5:

This windows show the creatures moving around. A small menu on the top right permits to
reduce the refresh rate of the window, for faster simulation.

4. Evolution and simulation parameters

Selecting the icon, you access to the evolution and simulation parameters. For a “standard”
experiment definition, the most important parameters are in the following sub-menus :

5

We will now describe shortly these five main parameter choices:
• Parameters:

In this section you can mainly define the size of the gene pool, the method used to delete
genotypes when the gene pool is full, and the number of creatures simulated in the artificial
world. You can simulate more than one creature, other parameters should not be changed.

• Selection:
In this section you define how many genotypes are mutated, crossed over or keeped unchanged
during the evolutionary process. You can also define which is the selection rule. Default values
are good for standard simulations.

• Fitness:
Here you have the eight parameters that can be measured on a creature. For each parameter you
can define how this parameter will influence the fitness function.

• Energy:
Here you define how energy is managed: how much energy a creature has at the beginnig of its
life, how much energy is spent by metabolism, how much energy units a food ball provides.
“Automatic feeding” defines how many food ball will be automatically be placed in the
environment. As soon as a food ball is eaten, a new food ball is created and placed randomly.

• World:
Here you can define the type of world (for simple simulations always a flat surface), how big it
is and how boundaries are managed. The boundary “teleport” bring always the creatures inside
the arena, the “fence” is a wall all around the arena. All default parameters are good excepted
boundaries, which should be set to “teleport”.

5. Genotype encoding

The genotype encodes the morphology, the placement of sensors and actuators and the neural
network control. We will explain here the "f1" format of encoding, the best one for beginners.

• Morphology:
The morphology is based on sticks. A stick is represented in the genotype by a “X”. Branches
are introduced by a “(“, separated by commas and ended by “)”. For instance “XXX(XX,X)”
gives this:

Modificators can be applied to the sticks, changing their properties. Modificators are represented
by letters, placed before X's and ('s. They affect the following X and, usually less and less,
further following Xs. Big and small letters can be used; big letters increase the given property
while small ones decrease it. Existing modificators: R, r, Q, q, C, c, L, l, W, w, F, f, A, a, S, s, M,

6

m, I, i, E and e. For instance the “R” modificator generates a rotation of 45 degrees of the stick.
The genotype “X(X,RRX(X,X))” represents the following structure:

The modificator “C” controls the curvedness of the link. The modificator “L” makes the stick
longer, the modificator “l” make it shorter. The genotype “XlCXlCXlCX” gives the following
structure:

More examples and explanations on modificators are available under
http://www.frams.poznan.pl/a/al_genotype.html):

• Sensors and actuators:
There are three possible sensors, each of them being represented by a letter:

1. G: gyroscope
2. T: touch sensor
3. S: smell for food

Actuators can be of two types:
1. @: rotation of the stick
2. |: bending of the stick

Sensors and actuators are placed in [] after the corresponding X’s. They are associated to
neurons. See next section.

• Neurons:
Neurons are units giving as output the sum of many weighted inputs. The syntax of this type of
neuron is: [input:weight , input:weight , input...]. “weight” is a numeric value, positive or

7

negative. “input” can represent a sensors or another neuron. If a sensor is used as input, the letter
of the corresponding sensor is placed as “input”. For instance “X[T:1]” represents a stick with a
neuron having as input a touch sensor with weight 1, as following:

If the input is another neuron, the “input” field is a numeric value representing the relative
position of the neuron in the genotype. In the genotype “X[2:-1,1:3](X[T:1],X[S:1])” , the first
neuron has as input the last neuron (2nd neuron after its position) with weight -1 and the middle
neuron (1st neuron after its position) with weight 3, as following:

To control an actuator, a neuron has to be associated with it. In this case the syntax of the neuron
is: [actuator input:weight , input:weight , input...]. “actuator” is one of the letters presented
above. For instance the genotype “X[| T:1]” represents a stick with a touch sensor as input of a
neuron controlling the bending muscle, as following:

8

