Automated Design Competition at GECCO 2025

Maciej Komosinski

Agnieszka Mensfelt

Konrad Miazga

www.framsticks.com

Framsticks

Competition

Participants

Rosults

Automated design

Framsticks

Competitio

Participant

Results

To avoid duplication of slides from the previous year, this section has been skipped.

See the full 2024 presentation first at https://www.framsticks.com/files/presentations/

Framsticks

Competition

Participants

Framsticks

Framsticks

Competition

Participant

Results

To avoid duplication of slides from the previous year, this section has been skipped.

See the full 2024 presentation first at https://www.framsticks.com/files/presentations/

Framsticks

Competition

Participants |

Results

Competition

Framsticks

Competition

Participants

Results

To avoid duplication of slides from the previous year, this section has been skipped.

See the full 2024 presentation first at https://www.framsticks.com/files/presentations/

Framsticks

Competition

Participants

Rosults

Participants

Submissions

Automated design

Framsticks

Competition

Participants

Results

2024:

- TryBestEA
- CaSPO ("Cascaded Structure and Parameter Optimization Based on Prior Knowledge")
- AdaptMut+Diversity ← 2024 winner, becomes the baseline for 2025

Submissions

Automated design

Tambucks

Competition

Participants

Results

2024:

- TryBestEA
- CaSPO ("Cascaded Structure and Parameter Optimization Based on Prior Knowledge")
- AdaptMut+Diversity ← 2024 winner, becomes the baseline for 2025

2025:

GP-GOMEA-Island-Mut

Submission: AdaptMut+Diversity

Automated

Framsticks

Competitio

Participants

Result

2024 winner, becomes the baseline for 2025

This submission uses the **f0** encoding, but other encodings can be used as well.

Two mechanisms introduced aimed at promoting explorative capabilities:

- Adaptive mutation strength the mutation strength (i.e., the number of mutation operations applied to a genotype) is adjusted during evolution. Starts from mutation strength = 1.0. If the maximal fitness of the population has not changed by more than 1% for the last 4 generations, the mutation strength is multiplied by 1.1. Otherwise, it is multiplied by 0.9. Mutation strength is limited to the range [1, 5]. The motivation was to help the algorithm escape the local optima.

Submission: GP-GOMEA-Island-Mut

Automated design

Tambucks

Competitio

Participants

- This submission uses the **f1** encoding represented as a Genetic Programming (GP) tree
- There are 10 islands (populations), 30 individuals each.
- Genotypes in the initial island populations are randomly generated as f1 genotypes using the Framsticks library function:
 getRandomGenotype(initial_genotype="X", parts_min=20,
 parts_max=30, neurons_min=6, neurons_max=8, iter_max=100,
 return_even_if_failed=True).
- Processing each population see the next slide.

Submission: GP-GOMEA-Island-Mut

Automated design

Compositio

Participants

Islands (populations) are processed sequentially, each undergoing the following steps:

- Genotypes are converted from f1 to GP trees (in normal Polish notation, NPN).
- Linkage tree is built using hierarchical clustering.
- Gene-pool Optimal Mixing (GOM) is performed. Each genotype undergoes GOM.
- In the GOM operator, the shorter genotype is padded with special symbols at the end, and mixing is performed. After that, the special symbols are filtered out.
- Genotypes are converted from GP trees (NPN) to f1 for evaluation.
- When stagnation is detected (best fitness in the population not improving for 2 generations), mutation is performed (on the entire population with probability of 80%). The default, native f1 mutation operator is used.
- If the similarity of any two populations is above 0.8, one of them is reinitialized randomly. Similarity is estimated using the identity of genotypes and the Jaccard index: intersection over union $=\frac{|\text{unique genotypes, the same in each population}|}{|\text{unique genotypes in merged both populations}|}$.
- If the uniqueness of the population = $\frac{\text{number of unique genotypes}}{\text{population size}}$ is below 0.2, individuals from other islands migrate to it (25% random originals stay, the remaining 75% is migrated as random genotypes from random islands).

Framsticks

Competition

Participants

Results

Best solutions

Automate design

Framstick

Competitio

r ar treip

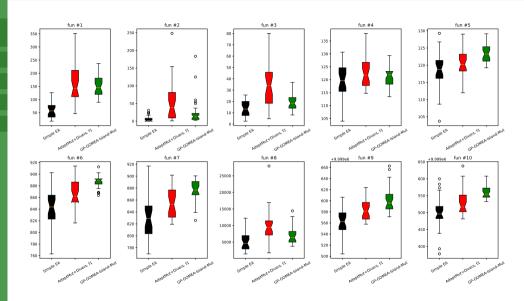
Results

Distance:

https://www.framsticks.com/files/varia/automated-design-competition-2025-best-distance.mp4

Tall runners:

https://www.framsticks.com/files/varia/automated-design-competition-2025-best-tall-runners.mp4

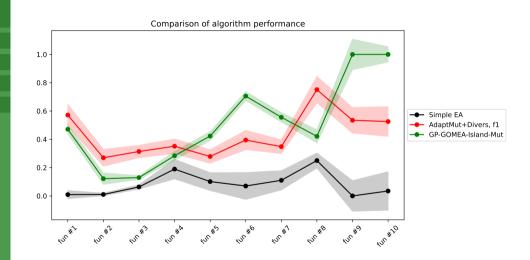

Individual benchmark tasks

Automated

Framsticks

Competition

Participants

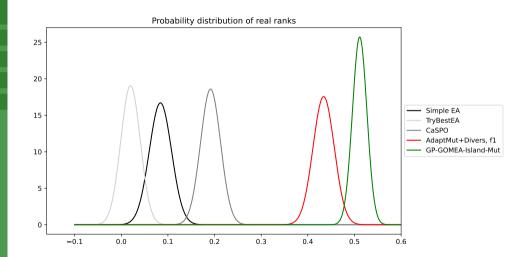

Averaged normalized performance

Automated design

Framsticks

Competition

Participants


Aggregated performance

Automated design

Framsticks

Competition

Participants

Best algorithm: winning in the "f1 genetic encoding" category

Automated design

Framstick

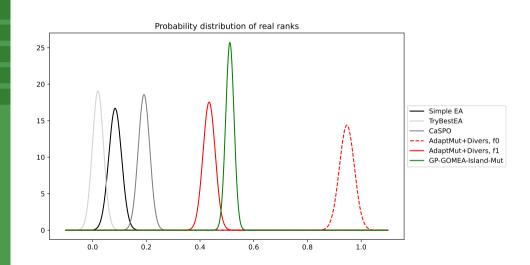
Competitio

Results

The 2025 submission outperformed the 2024 winner when evaluated using the **f1** genetic encoding.

However, the 2024 winner remains unchallenged when used with the ${\bf f0}$ genetic representation!

Aggregated performance


Including the 2024 winner that uses the better-performing encoding

Automated design

Framsticks

Competition

Participant

