Automated Design Competition at GECCO 2024

Maciej Komosinski Agnieszka Mensfelt Konrad Miazga

www.framsticks.com

Automated design

Framsticks

Competition

Participants

Results

Automated design

Examples of evolutionary design

Automated design

Framsticks

Competition

Participants

Results

Automated Antenna Design with Evolutionary Algorithms, G. Hornby et al., 2006

Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design, J. Byrne et al., 2011

Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants, F. Corucci, 2017

Framsticks [KU24]

Evolving virtual creatures, K. Sims [Sim94]

Generative representations, G. Hornby [Hor03]

Challenges in automated design

Automated design

- Competition
- Participants
- Results

- Mixed representations (discrete and continuous)
- Genotypes of variable size
- Non-obvious representation
- Complex genetic operators
- Complex evaluation criteria
- Computationally costly evaluation
- Nondeterministic evaluation

Automate design

Framsticks

Competition

Participants

Results

Framsticks – general information

Automate design

- Competition
- Participants
- Results

- https://youtu.be/CrWj_l-UrN4?t=60
- https://youtu.be/r5RfTmx3S4g

Framsticks – general information

Automate design

- Competition
- Participants
- Results

- https://youtu.be/CrWj_l-UrN4?t=60
- https://youtu.be/r5RfTmx3S4g

- Developed since 1996
- Authors and main developers: Maciej Komosinski and Szymon Ulatowski
- Volunteers involved in development, experiments, and technical support

Software

Framsticks

Simulator command-line and network server

Artificial Life (mobile app)

Native library with C++ and Python bindings

class FramsticksLib:

def getSimplest(genetic_format) \rightarrow str

def evaluate(genotype_list: list[str]) \rightarrow list[dict]

def mutate(genotype_list: list[str]) \rightarrow list[str]

def crossOver(geno_parent1: str, geno_parent2: str) \rightarrow str

def dissimilarity(genotype_list: list[str]) \rightarrow np.ndarray

def isValid(genotype_list: list[str]) \rightarrow list[bool]

Body and brain

Automate design

- Competition
- Participants
- Results

- Composed of "body" and "brain"
- Body made of basic mechanical elements
- Brain made of artificial neurons
- Receptors and effectors: environment ↔ body ↔ brain
- Can be simplified or customized as needed

Simulation – the "MechaStick" engine

Genetics

Automate design

- Competition
- Participants
- Results

- Various genetic encodings available
- Custom genetic code can be implemented with its own characteristics, biases, mutation and crossover
- $\bullet\,$ For a new encoding, need to implement genotype $\rightarrow\,$ phenotype mapping

Automate design

- Framsticks
- Competition
- Participants
- Results

- All elements directly described
- Basic, internal format
- "Serialization" of a Model
- Supports geometric relativity

Automate design

- Framsticks
- Competition
- Participants
- Results

- All elements directly described
- Basic, internal format
- "Serialization" of a Model
- Supports geometric relativity

//0
p:
p:1.0
p:1.5,-0.612,0.612
p:1.5,0.612,-0.612
j:0,1,rx=-0.7854,dx=1.0,0.0,0.0
j:1,2,rx=-0.5184,rz=-1.0472,dx=1.0,0.0,0.0
j:1,3,rx=-0.5184,rz=1.0472,dx=1.0,0.0,0.0
n:j=1,d=@:p=0.25
n:p=3,d=Sin
c:0,1

Genetics $-\mathbf{f0}$ representation

Automate design

- Framsticks
- Competition
- Participants
- Results

- All elements directly described
- Basic, internal format
- "Serialization" of a Model
- Supports geometric relativity

//0
p:
p:1.0
p:1.5,-0.612,0.612
p:1.5,0.612,-0.612
j:0,1,rx=-0.7854,dx=1.0,0.0,0.0
j:1,2,rx=-0.5184,rz=-1.0472,dx=1.0,0.0,0.0
n;j=1,d=@:p=0.25
n:p=3,d=Sin
c:0,1

Equivalent to this **f1** genotype:

qX(X[@,1:1],X[Sin])

which was converted to **f0** according to the genetic encoding conversion graph.

Automate design

Framsticks

Competition

Participants

Results

//0

p:fr=0.025, vg=0.875 p:0.351, fr=0.025, vg=0.875 p:0.245, 0.324, fr=0.0062, vg=0.875 p:-0.195, 0.397, fr=0.1, vg=0.875

j:0, 1, dx=0.351, 0.0, 0.0 j:1, 2, rz=1.884, dx=0.341, 0.0, 0.0 j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0 j:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0

```
n:j=2, d=@:p=0.625
n:p=4, d=N:in=0.0
n:j=3, d="|:p=0.55,r=0.333333"
```

... **c:**0, 2, 1.272 **c:**1, 0 **c:**2, 8, 0.931

Automate design

Framsticks

Competition

Participants

Results

parts	//0 p:fr=0.025, vg=0.875 p:0.351, fr=0.025, vg=0.875 p:0.245, 0.324, fr=0.0062, vg=0.875 p:-0.195, 0.397, fr=0.1, vg=0.875
	 j:0, 1, dx =0.351, 0.0, 0.0
joints	j:1, 2, rz=1.884, dx=0.341, 0.0, 0.0
	j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0 j:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0
neurons	n:j=2, d=@:p=0.625
	n:p=4, d=N:in=0.0
าร	n:j=3, d=" :p=0.55,r=0.333333"
8	c :0, 2, 1.272
conn's	c: 1, 0 c: 2, 8, 0.931
	012, 0, 0.001

parts

neurons

conn's

Automate design

Framsticks

Competition

Participants

Results

//0 p:fr=0.025, vg=0.875 p:0.351, fr=0.025, vg=0.875 p:0.245, 0.324, fr=0.0062, vg=0.875 p:-0.195, 0.397, fr=0.1, vg=0.875

j:0, 1, dx=0.351, 0.0, 0.0 j:1, 2, rz=1.884, dx=0.341, 0.0, 0.0 j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0 j:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0

n:j=2, d=@:p=0.625 n:p=4, d=N:in=0.0 n:j=3, d="|:p=0.55,r=0.333333"

c:0, 2, 1.272 **c:**1, 0 **c:**2, 8, 0.931


```
Results
```


//0 p:fr=0.025, vg=0.875 p:0.351, fr=0.025, vg=0.875 p:0.245, 0.324, fr=0.0062, vg=0.875 p:-0.195, 0.397, fr=0.1, vg=0.875

j:0, 1, dx=0.351, 0.0, 0.0 j:1, 2, rz=1.884, dx=0.341, 0.0, 0.0 j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0 j:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0

n:j=2, d=@:p=0.625 n:p=4, d=N:in=0.0 n:j=3, d="|:p=0.55,r=0.333333"

c:0, 2, 1.272 **c**:1, 0 **c**:2, 8, 0.931

. . .

- Properties are local, relative
- Properties propagate along the body
- Control elements (neurons, sensors) are near elements under control (muscles, sticks)
- Recursive body (tree)
- Any topology of NN
- Human-friendly

Automate design

Framsticks

Competition

Participants

Results

- Automated design
- Framsticks
- Competition
- **Participants**
- Results

- Properties are local, relative
- Properties propagate along the body
- Control elements (neurons, sensors) are near elements under control (muscles, sticks)
- Recursive body (tree)
- Any topology of NN
- Human-friendly

- Properties are local, relative
 - Properties propagate along the body
 - Control elements (neurons, sensors) are near elements under control (muscles, sticks)
 - Recursive body (tree)
 - Any topology of NN
 - Human-friendly

Automated design

Framsticks

Competition

Participants

Results

- Automated design
- Framsticks
- Competition
- Participants
- Results

- Properties are local, relative
- Properties propagate along the body
- Control elements (neurons, sensors) are near elements under control (muscles, sticks)
- Recursive body (tree)
- Any topology of NN
- Human-friendly

Genetics – f1 representation "modifier" genes

Automate design

Framsticks

Competition

Participants

Results

R rRotation of the branching plane by 45°Q qTwist of the branching planeC cCurvednessL lLengthF fFrictionM mMuscle strength

A complete description: https://www.framsticks.com/a/al_geno_f1.html

Genetics – **f1** representation example

Automate design

Framsticks

Competition

Participants

Results

db(,rrIMMMMXIFFFFCgX[|T:10.159,/:-1.442,1:3.562][@0:-51.595],FFFFIL X[|0:2.744,-2:-3.181,-1:1.151][8:2.682],rrMMXIFFFFMMMMCgX[|T:-162.1 72,-1:8.977][@4:-0.573,3:0.724,fo:1],,,LLLXMMM(rrIMXIFFFFCgX[|T:-80.858,0: 4.784][@*:8.62],,,gX[0:657.704,-1:-3.466,-1:-346.898][|-6:2.895,fo:0.208],,,rrIMXI FFFFCgX[N,si:999][|T:-78.873,0:2.585,-1:-2.867]))

Genetics – **f1** representation example

Automate design

Framsticks

Competition

Participants

Results

db(,rrIMMMMXIFFFFCgX[|T:10.159,/:-1.442,1:3.562][@0:-51.595],FFFFIL X[|0:2.744,-2:-3.181,-1:1.151][8:2.682],rrMMXIFFFFMMMMCgX[|T:-162.1 72,-1:8.977][@4:-0.573,3:0.724,fo:1],,,LLLXMMM(rrIMXIFFFFCgX[|T:-80.858,0: 4.784][@*:8.62],,,gX[0:657.704,-1:-3.466,-1:-346.898][|-6:2.895,fo:0.208],,,rrIMXI FFFFCgX[N,si:999][|T:-78.873,0:2.585,-1:-2.867]))

Automate design

Framsticks

Competition

Participants

Results

Competition

Automate design

Framsticks

Competition

Participants

Results

The competition concerns the **development of an efficient algorithm to optimize active 3D designs** (i.e., simulated agents or robots).

Competition

<i>C</i>	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Comi	petition

Framstick

Competition

Participants

Results

GREY BOX EVALUATION

Competition

Competition

Framsticks

Competition

Participants

Results

Automate design

Framsticks

Competition

Participants

Results

genotype $\downarrow (simulation)$ $COG (center of gravity) path = [[x_1, y_1, z_1], [x_2, y_2, z_2], ..., [x_n, y_n, z_n]]$ $\downarrow (fitness function)$ fitness value

Fitness function examples

Automate design

Framsticks

Competition

Participants

Results

genotype $\downarrow (simulation)$ $COG (center of gravity) path = [[x_1, y_1, z_1], [x_2, y_2, z_2], ..., [x_n, y_n, z_n]]$ $\downarrow (fitness function)$ fitness value

Examples:

Fitness function: example formulations

from FramsticksLibCompetition.py	
----------------------------------	--

```
design
```

Framsticks

```
Competition
```

Participants

Results

import numpy as np
path = np.array(path) # COG path

if self.TEST_FUNCTION == 3:
 return np.linalg.norm(path[0] - path[-1]) # simple example:
 returns distance between COG locations of birth and death.

```
elif self.TEST_FUNCTION == 4:
    return np.linalg.norm(path[0] - path[-1]) * np.mean(np.maximum(0,
    path[:, 2])) # simple example: run far and have COG high above
    ground!
```

Technicalities

Automate design

- Framsticks
- Competition
- Participants
- Results

- Source code in Python
- FramsticksLib.py a Python class providing basic operations like mutation, crossover, and <u>evaluation</u> of genotypes
- FramsticksLibCompetition.py same interface, but recording the highest achieved fitness and limiting the number of evaluation calls. This class is actually used when evaluating algorithm performance participants should use it
- Public modules, libraries, and frameworks can be used
- 2 GB memory limit, single-process, single-threaded, no GPU
- Runs are terminated after 100 000 evaluations, or 1 hour of computation (excluding the time of evaluating solutions)
Judging

Automate design

Framsticks

Competition

- Participants
- Results

- 10 optimization tasks
- 30 repeated runs per task, per entry, each run returns best fitness
- These 30 best fitness values are averaged
- The resulting average is normalized taking into account other submissions
- The average of 10 normalized values constitutes the final score of the algorithm
- Winning entries must beat the baseline (a simple EA with niching)

Automate design

Framstick

Competition

Participants

Results

Participants

Submissions

Automate design

Framsticks

Competition

Participants

Results

Three submissions:

- TryBestEA
- CaSPO ("Cascaded Structure and Parameter Optimization Based on Prior Knowledge")
- AdaptMut+Diversity

Automate design

Framsticks

- Competition
- Participants
- Results

- $\, \bullet \,$ This submission uses the f1 encoding, but other encodings can be used as well
- Four different evolutionary algorithms using DEAP:
 - eaSimple
 - eaMuPlusLambda
 - eaMuCommaLambda
 - Custom strategy
 - Adjusting probabilities of mutation and crossover based on diversity and relative position of average fitness to median
- Perform runs using each of them (equal number of evaluations per each algorithm)
- Final result is the best result found by any of the algorithms

Submission: CaSPO

Automate design

- **Framsticks**
- Competition
- Participants
- Results

- $\bullet\,$ This submission uses the f1 encoding
- Initial population of diverse structures is generated with LLMs
- Each generation consists of three steps:
 - Generate new individuals (EA1)
 - Oisturb control system of top-k individuals from EA1 (EA2)
 - Fine-tune top-k individuals from combined EA1 and EA2

Details published in:

Xiang Shu, Yiyi Zhu, Renji Zhang, Xiang Xia, Bingdong Li, Hong Qian.

Automated Design Competition Technical Report: Cascaded Structure and Parameter Optimization Based on Prior Knowledge.

GECCO '24 Companion, https://doi.org/10.1145/3638530.3664054

Submission: AdaptMut+Diversity

Automated design

Framsticks

Competition

Participants

Results

This submission uses the ${f f0}$ encoding, but other encodings can be used as well.

Two mechanisms introduced aimed at promoting explorative capabilities:

- Adaptive mutation strength
 - The mutation strength (i.e., the number of mutation operations applied to a genotype) is adjusted during evolution
 - Starts from mutation strength = 1.0. If the maximal fitness of the population has not changed by more than 1% for the last 4 generations, the mutation strength is multiplied by 1.1. Otherwise, it is multiplied by 0.9
 - Mutation strength is limited to the range [1, 5], and turned into an integer number of mutation operations using stochastic rounding
 - The motivation was to help the algorithm escape local optima
- Introducing random individuals
 - Each mutation operation has a small probability (1%) of introducing a randomly generated individual to the population instead of mutating the current one
 - Allows to explore the search space more effectively by introducing new genetic material

Population size = 50, tournament size = 5, $p_{mutation}$ = 0.8, $p_{crossover}$ = 0.2.

Automate design

Framstick

Competition

Participants

Results

Results

Best solutions

Automat design

Framsticks

Competition

Participants

Results

Distance:

 $\verb+https://www.framsticks.com/files/varia/automated-design-competition-2024-best-distance.mp4+test-di$

Tall runners:

https://www.framsticks.com/files/varia/automated-design-competition-2024-best-tall-runners.mp4

Individual benchmark tasks

Averaged normalized performance

Aggregated performance

Best algorithm: winning because of a better genetic encoding?

Automate design

Framsticks

Competition

Participants

Results

The best algorithm, as the only one, used the genetic representation f0.

Is this why this algorithm was winning?

Let us see how it performs when used with genetic representation f1 (the one employed by all other participants).

Aggregated performance

Including the winner that uses the less performant encoding

