Framsticks model and genetics

Maciej Komosinski Szymon Ulatowski

www.framsticks.com

Outline

Model

Body

Interaction

Genetic

f0

fL fL

...

IB

10

f7

f4

Mutation and repai

References

organism model

- body
- brain
- sensors and effectors

genetics

- representations
- conversions
- operators

Organism. Elements

Model

Brain

Genetic

- Parts
- Joints
- brain

body

- Neurons
 - signal processing / sensors / actuators
 - embodied or not
 - Connections

Organism. Body elements

The model can be of one of the two types:

SHAPETYPE_BALL_AND_STICK

or SHAPETYPE_SOLIDS

Organism. Body elements

Model

Body Brain

Genetic

fL fH fB f6

14 Mutation and repa

Reference

The model can be of one of the two types: SHAPETYPE BALL AND STICK

- Parts
 - type
 - for SHAPETYPE_BALL_AND_STICK a point,
 - for SHAPETYPE_SOLIDS ellipsoid/box/cylinder
 - 3D position
 - 3D orientation
 - physical properties: mass, friction, etc.
 - experiment-specific properties: ingestion and assimilation ability, ...
- Joints
 - references of the two Parts
 - can be "relative" (store information about length, and set coordinates of the other Part wrt. the first Part)
 - physical properties: axial stiffness, rotational stiffness, etc.
 - experiment-specific properties: stamina, ...

Organism. Body constraints

Model

Body Brain

Genetic

f0 f1

fL

fl

f6

f7

f4

f4

Mutation and repa

- at most one Joint can directly connect two Parts
- each Joint must be connected with (must be incident on) two distinct Parts
- all Parts must be directly or indirectly connected with each other
- relative Joints must not form cycles

Organism. Body properties

Joints: axial stiffness, rotational stiffness

Parts: mass, friction, size

Muscles: strength/speed

Physical

Model

B**ody** Brain

Interaction

Genetics

f0 f1

fL

fl

66

. .

fi

f4

Mutation and

References

Experiment-specific examples

- Parts: assimilation, ingestion
- Joints: stamina
- Muscles: energy consumption

Organism. Body properties

Physical

- Parts: mass, friction, size
- Joints: axial stiffness, rotational stiffness
- Muscles: strength/speed

Experiment-specific examples

- Parts: assimilation, ingestion
- Joints: stamina
- Muscles: energy consumption

Organism. Body properties

Experiment-specific examples

Parts: mass, friction, size

Physical

- Joints: axial stiffness, rotational stiffness
- Muscles: strength/speed

- Parts: assimilation, ingestion
- Joints: stamina
- Muscles: energy consumption

Organism. Brain

Model

Body Brain

Interactions

Genetics

- f0 f1
- fL fH
- fH
- f6
- f7
- Mutation and son

- any topology of a neural network, synchronous update
- neurons embodied (Parts, Joints) or not
- implement any function
- inputs: none / one / many
- outputs: none / one (may have many channels)
- a list of neural properties (parameters)
- definition: C++ or a script (*.neuro file)
- weighted connections

Model

Body Brain

Interactio

Genetic

f0 f1

fL

fl

fB.

66

67

17

Mutation and re

Reference

Short name: Thr

Long name: Threshold

- single input
- single output
- properties:
 - t (threshold)
 - hi (high output value)
 - lo (low output value)
- if (input≥t) then output:=hi else output:=lo

Short name: N

Long name: Neuron

- many inputs
- single output
- properties:
 - fo (force)
 - in (intertia)
 - si (sigmoid)

$$egin{aligned} o_t &= rac{2}{1+e^{-s_t \cdot Sigmoid}} - 1 \ s_t &= s_{t-1} + v_t \ v_t &= v_{t-1} \cdot interia + force \cdot (i_t - s_{t-1}) \end{aligned}$$

i – weighted sum of inputs

v – speed of changes

s - internal state

o – neuron output

Subscript *t* is the moment of time.

force := 1inertia := 0

$$O_t = rac{2}{1 + e^{-i_t \cdot Sigmoid}} - 1$$

(note that in this case, s_t becomes i_t)

Short name: Fuzzy

Long name: Fuzzy

neuron

Model

Body

Interactions

Genetic

f0 f1

fL

fl

f6

f7

f4

Mutation and rep

- many inputs
- single output (with many channels)
- properties:
 - fuzzy sets
 - fuzzy rules
- represents a fuzzy rule-based system [HKW03; HK08]

Short name: Fuzzy

Long name: Fuzzy

neuron

Model

Body Brain

Brain Interactions

Genetic

f0 f1 fL fH

fB f6

f7 f4

with and re

- many inputs
- single output (with many channels)
- properties:
 - fuzzy sets
 - fuzzy rules
- represents a fuzzy rule-based system [HKW03; HK08]

A custom "Wheel" effector for robotic experiments

Model

Body **Brain**

- .

f0 f1 fL

fB f6

f4

.....

Reference:

 affects movement of a Part in the agent

A custom "Wheel" effector for robotic experiments

Model

Body **Brain**

. . .

f0 f1 fL

fH fB f6

f7 f4

Mutation and repa

References

 affects movement of a Part in the agent

Model

Body **Brain**

....

ienetics

f1 fL fH

fH fB f6

f6 f7 f4

Mutatio

References

A vector eye (VEye) sensor

- optional input controls tilt (rotation)
- single output (with many channels) outputs perceived vector coordinates
- properties: the object (sic!), scale, perspective
- details: [JK06], video

Organism. Brain. Neuron list

Model			
Body	Short name	Long name	Description
Brain			
Interactions	N	Neuron	Standard Framsticks sigmoid neuron
	G	Gyroscope	Tilt sensor
Genetics	Т	Touch	Touch sensor
f0	S	Smell	Smell sensor
fl	*	Const	Constant value
fL.		Bend muscle	
fH	@	Rotation muscle	
fB	D	Differentiate	Calculate the difference between the current and previous input value
f6 f7	Ch	Channelize	Combines all input signals into single multichannel output
f4	ChMux	Channel multiplexer	Outputs one channel from first (multichannel) first input, selected by the second
Mutation and repair	ChSel	Channel selector	Output one channel from multichannel input, selected by the "ch" parameter
	Rnd	Random value	
References	Sin	Sinus Generator	Output frequency $= f0 + input$
	Delay	Delay	
	Thr	Threshold	if (input>=t) then output=hi else output=lo
	Fuzzy	Fuzzy neuron	
	VEye	Vector eye	
	LMu	Length muscle	
	Water	Water detector	
	Energy	Energy level	

organism

environment

Model Body Brain Interactions Genetics 10 11 14 16 17 16 17 18 Mutation and repair

Model

Body

Interactions

Conotic

f0

f1

fL

fl

ce

110

f6

f7

f4

Mutation and repa

Model

Body

Interaction

Conotic

f0

f1

†L

fl

fE

66

f7

£Δ

Mutation and rena

Body Brain Interactions

Conotio

f0 f1

fL

fH

fB

67

17

Mutation and repa

Model

Body Brain

Interactions

Constine

f0

fl

fŀ

fE

f

67

f

14

Mutation and repai

References

Receptors and effectors

bending and rotating muscles

Genetics. Transformations.

Genetics

DNA — organism

genotype \Longrightarrow model

Why so important? ... Fitness landscapes!

Genetics

f0 f1

f1

fl

fB

66

--

f7

f4

Mutation and repair

Why so important? ... Fitness landscapes!

Model

Body Brain

Interaction

Genetics

f0 f1

11 61

- 11

111

...

f6

f7

Why so important? ... Fitness landscapes!

Body

Interacti

Genetics

f0 f1

fl

fl

fl

66

67

17

Search / optimization / evolutionary algorithms

Model

Body Brain

Genetics

```
f0
f1
fL
fH
fB
f6
f7
```

Mutation and rena

References

Stages of search (lower = better):

Search / optimization / evolutionary algorithms

Model

Body Brain

Genetics

f0
f1
fL
fH
fB
f6
f7
f4
Mutation

References

Stages of search (lower = better):

Search / optimization / evolutionary algorithms

Genetics

Stages of search (lower = better):

Model Body Brain Interactions Genetics 11 1L 1B 1B 16 17 14

gener recur devel simul model simil chem messy forams biol

Genetics

Model

Body

Genetics

f0 f1

fL fH

fH fB

f6

f7

Mutation and rep

Genetics

Model

Body

Brain

Genetics

f0 f1

fL

fl-

fl

f6

f7

17

Mutation and ro

Genetics

Body Brain Interactions Genetics

f1 fL fH fB

f6 f7

Mutation and rep

Model

Body Brain

Interactions

Genetics

f0 f1

1

fH

fB

f6

f7 f4

Mutation and repa

```
output
i
n (Mahhhha)
u
```

Model

Brain

Genetics

f0 f1 fL

fH

fB f6

f7

Mutation and re

References

```
aXfffXrXX
a:a......
X:.X.....
3f:..fff....
x:.....X...
r:.....r...
2x:....xx

fTest → f1
```

output

p

Model

Body Brain

Genetics

p

f0 f1 fL fH

fB f6 f7 f4

f4 Mutation and rena

X(X,RRX(X,X(X,X)))

f1 → phenotype

X(X,RRX(X,X(X,X)))

output aXfffXrXX Parts Joints Neurons 012345678901234567890123456789 a : a..... X : .X..... x • 01....... 3f : ..fff.... p Genetics X :X... r :r.. 2X :XX $fTest \rightarrow f1$ $f1 \rightarrow phenotype$

X(X,RRX(X,X(X,X)))

```
Model
Body
```

Genetics

(,LFMW(LLX[] 1 :3.455,0 :1.453][] 1 :-509.744,-1 :1.033][@9 :-1] ,,rtX[/ :2.834]a(rtX[G:0.827](RLLX[[9:-1], LLiqwX[@G:93.351,-1 :727.177]),rrfMX[G:1,ULcMX] @0 :2.095][[8:-1], LLX[[7:1]),rtX[G:1.151, -1 :1.629]F(LLcX[[8:-0.859], LLX[[7:1.482]), rtX[G:3.254]F(LLX[[9:-2.621], LLX[[8: 0.783]),rtX[G:1]F(LLwX [[9:-1],LLX[[1:1.221,-1 :-3.208]), rtwX[G:1.052](LLFIX[@1:1.601] [1-20:-0.665], LLQX[1:1.000]), rtxX[G:0.757,-1 :-2.644]f(rLLMMX[[-21:-1.377], LLX[[-22:0.984]), rtQX[G:0.887,-1 :0.750](LLX [[G:0.930], LLX[[-22:2.345])) ,,LLX[[-19:-4.840,-1 :-0.757]))

Model

Body Brain

Genetics

/*4*/Amm#4| | <<| X#2#3

WRe>#4FR#5FR>>>W#2

"4"/Amm#4LL<<LX#2#3
WRe>#4ER#5ER>>>₩#2
>><**X**#3#2R>#2ML#2>E
>>#3#2E>>£, RA#3W#4#
2R>#2ML#2>F>>#2>#2>C>ECM3E#4PLL>

#3#2R>#4ML#2>F>>#2>CL
#3#2R>#4ML#2PS>>#3
#2E>>X+3ML#2>S=>LL
#3#2R>#4ML#2R>F>>#3
#2E>X+3X+3HZRAFA

Genetics

#4*/mSISIIa#4a#2FIIIII#< I < I I I < SI < X > i CL MRI aRm <SXm>I <I Xi>I SI FI <I X⊳cc ReCSal Le<X>LIXL>m.Cfl M RaR<LMIXL>LEL<LX>cEeC SLI e<X>| |X| >N>>>>mX

/*4*/ML<XC>sl#8#3IL#3#Lrm>M>smmmmm<<X>RW#2#L >>Ls<A<sXS#3>>F#2#3LRr#3w>>C>#I#3>>X#2 >>#2L> #2><X>FfX#2Lc,>>#FRL>>>fFL#3#>SM<XN>>sm@m<@ F#2#E>[0:4.07804]>L:-/:A<W<W#L<><fm#2r>>N@ [-1:-0.0312815]>>N@[-1:-4.75036]>>FA<#3EL:+=:F#3>> #2>@X>S>M<#2>#3RE>[*:-4.0762]>c|#2aN><XRSL#2#2 L>SM<>XFI>Es<@F<#2#E>I0:4.20648I>L:/:I[0:3.88302] A|| <WAW[0:-4.04891] W#2Lfm#3r>>M <cX>#2>#4RE> [*:-4.0762]>A<#3Lf[-1:-0.317545]#4>>#2<X>>@>S>X> <X>IRa##E><<>X>N@ [S:4.94324]>>@fR#3LaF<X>f><> X.<F#2[G:-4.34629]Xrf#2a><XSL#4N#[0:-3.5699]>ES ":-3.37672]|<c>>smm<fA#3>>@FelN##E>><N@ [0:-4.43602]>>LF##2>>L[-1:0.0882748]#2A>r>LX> I-1:-0.2672661I0:1.97195

/*4*/I <X#2MC#I Fme>>>I I I I I Fl eSI e#8s#4F#6w fl WIS<Xf>I I eI SI em<FeIX#2 #AM>>s>#6I al >r>F#6w fl WIS<X#2f>>I al SI am<FIX#2#AM>>s>#5I al >r>f>MC as||L>#2<[0:-2.54369]>N@.X[-1:-4.64293]>

Characteristics of genetic representations [KR01]

Model

Body Brain

Genetics

f1 fL fH fB f6 f7 f4

Mutation and repair

	Complexity		Constraints	
	Genotype	Interpretation	Body	Brain
simul	Med	Low	None	None
recur	Med	Med	High	Low
devel	High	Med	High	Low

	Modularity	Symmetry	Compression	Redundancy
simul	None	None	None	None
recur	None	Low	None	Low
devel	High	High	Var	None

Characteristics of genetic representations

Brain Interactions

Genetics

f0 f1 fL fH

f4
Mutation and repair

	Complexity		Constraints		Cyclic		
	Format	Interpret	Body	Brain	Body	Compression	Redundancy
simul	Med	Low	None	None	Y	None	None
recur	Med	Med	High	Low	N	None	Low
simil	Low	High	Med	None	Y/N	Low	None
chem	Low	High	Med	None	Y/N	Var	Var
devel	High	Med	High	Low	N	Var	None
messy	High	Low	High	?	N	None	None

Genetic operators

Model

Body

Interaction

Genetics

f0

11

...

TH

...

67

f7

Mutation and renai

References

format 12.574 12.574 12.574 12.574

Genetic operators

Model

Body Brain

Genetics

f0 f1

fL

ff

f6

f7

14

References

format 12.574 12.574 12.574 12.574

Mutation

Crossover

Repair

Find error

Estimate similarity

Simplify

Genetic operators

- all elements directly described
- basic, internal format
- "serialization" of a Model
- supports geometric relativity

Model

Body Brain

Genetic

f0 f1 fL fH fB f6 f7

Mutation and repair

Reference:

```
• all elements directly described
```

- basic, internal format
- "serialization" of a Model
- supports geometric relativity

```
//0
p:
p:1.0
p:1.5,-0.612,0.612
p:1.5,0.612,-0.612
j:0,1,rx=-0.7854,dx=1.0,0.0,0.0
j:1,2,rx=-0.5184,rz=-1.0472,dx=1.0,0.0,0.0
j:1,3,rx=-0.5184,rz=1.0472,dx=1.0,0.0,0.0
n:j=1,d=@:p=0.25
n:p=3,d=Sin
c:0.1
```

```
    all elements directly described
```

- basic, internal format
- "serialization" of a Model
- supports geometric relativity

```
//0
D:
p:1.0
p:1.5,-0.612,0.612
\mathbf{p}:1.5.0.612.-0.612
i:0,1,rx=-0.7854,dx=1.0,0.0,0.0
i:1,2,rx=-0.5184,rz=-1.0472,dx=1.0.0.0.0.0
i:1.3.rx=-0.5184.rz=1.0472.dx=1.0.0.0.0.0
n:j=1,d=0:p=0.25
n:p=3.d=Sin
c:0.1
```

Equivalent to this f1 genotype:

which was converted to f0 according to the genetic encoding conversion graph.

```
//0
p:fr=0.025, vq=0.875
p:0.351, fr=0.025, vq=0.875
p:0.245, 0.324, fr=0.0062, vq=0.875
p:-0.195, 0.397, fr=0.1, vq=0.875
i:0, 1, dx=0.351, 0.0, 0.0
i:1, 2, rz=1.884, dx=0.341, 0.0, 0.0
i:1. 3. rz=2.513. dx=0.675. 0.0. 0.0
i:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0
n:j=2, d=@:p=0.625
n:p=4, d=N:in=0.0
n:j=3, d="|:p=0.55,r=0.3333333"
c:0, 2, 1,272
c:1.0
c:2, 8, 0.931
```

```
//0
p:fr=0.025, vq=0.875
p:0.351, fr=0.025, vq=0.875
p:0.245, 0.324, fr=0.0062, vq=0.875
p:-0.195, 0.397, fr=0.1, vq=0.875
i:0, 1, dx=0.351, 0.0, 0.0
i:1, 2, rz=1.884, dx=0.341, 0.0, 0.0
j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0
i:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0
n:i=2, d=@:p=0.625
n:p=4, d=N:in=0.0
n:j=3, d="|:p=0.55,r=0.333333"
c:0, 2, 1.272
c:1.0
c:2, 8, 0.931
```

```
lodel
bdy
ain
terrections

enetics
```

```
//0
    p:fr=0.025, vq=0.875
    p:0.351, fr=0.025, vq=0.875
    p:0.245, 0.324, fr=0.0062, vq=0.875
     p:-0.195, 0.397, fr=0.1, vq=0.875
     i:0, 1, dx=0.351, 0.0, 0.0
    i:1, 2, rz=1.884, dx=0.341, 0.0, 0.0
    j:1, 3, rz=2.513, dx=0.675, 0.0, 0.0
    j:3, 4, rx=0.785, rz=-1.5, dx=0.393, 0.0, 0.0
     n:i=2, d=@:p=0.625
neurons
     n:p=4, d=N:in=0.0
     n:j=3, d="|:p=0.55,r=0.333333"
    c:0, 2, 1.272
     c:1.0
    c:2, 8, 0.931
```


f0 crossing-over: idea

Model

Body

Conotic

f0

f1

fL

fŀ

†E

10

f7

Mutation and ren

f0 crossing-over: idea

Model

Body Brain

f0

f1

11

68

f€

f7

f4

iviutation and repair

f0 crossing-over: idea

Model

Body

Genetic

f0

fl

6

f

f

f

£Δ

Mutation and repa

f0 crossing-over: example

Model

Body

Interaction

Conotic

f0

-61

...

11.

- "

- - -

16

f7

f0 crossing-over: example

Model Body Brain Interactions Genetics 0

fH fB

f6 f7

f0 crossing-over: example

Model

Body

Interaction

Genetic

fO

£

fl

f

fE

f6

- 67

f7

Mutation and res

Model

Body Brain

Genetic

f0

fL

fB

10

f7

f4

Mutation and rep

References

• properties are local, relative

- properties propagate along the body
- control elements (neurons, sensors) are near elements under control (muscles, sticks)
- recursive body (tree)
- any topology of NN
- human-friendly

Model

Body Brain

Genetic

fL fH

f6 f7 f4

Mutation and repa

Reference

- properties are local, relative
- properties propagate along the body
- control elements (neurons, sensors) are near elements under control (muscles, sticks)

XXX(XX,X)

- recursive body (tree)
- any topology of NN
- human-friendly

Model

Body Brain

Genetic

fL fH fB f6 f7

f7 f4 Mutation and

Reference

• properties are local, relative

- properties propagate along the body
- control elements (neurons, sensors) are near elements under control (muscles, sticks)
- recursive body (tree)
- any topology of NN
- human-friendly

properties are local, relative

- properties propagate along the body
- control elements (neurons, sensors) are near elements under control (muscles, sticks)
- recursive body (tree)
- any topology of NN
- human-friendly

f1 "modifiers"

```
Model
```

Brain

Conotic

f0

fL

fH

fB

f6

f7

Mutation and re

References

```
R r | Rotation of the branching plane by 45°
```

Q q | Twist of the branching plane

C c Curvedness

L I | Length

F f | Friction

M m | Muscle strength

A complete description: https://www.framsticks.com/a/al_geno_f1.html

f1 example

f1 example

```
 \begin{array}{l} \textbf{Model} \\ \textbf{Body} \\ \textbf{Soldy} \\ \textbf{X}[|0:2.744,-2:-3.181,-1:1.151][8:2.682], rrMMX|FFFFMMMMCgX[|T:-162.1 \\ 72,-1:8.977][@4:-0.573,3:0.724, \textbf{fo:}1], ,,LLLXMMM(rrIMX|FFFFCgX[|T:-80.858,0: \\ 4.784][@*:8.62], ,,gX[0:657.704,-1:-3.466,-1:-346.898][|-6:2.895, \textbf{fo:}0.208], ,,rrIMX| \\ \textbf{FFFFCgX[N,si:}999][|T:-78.873,0:2.585,-1:-2.867])) \end{array}
```


f1 crossing-over

Model

Brain

Genetic

f0

f1

1L

fŀ

fΒ

16

f7

Mutation and rep

References

Cutpoints may be selected proportionally to the length of both parents.

fL representation

Mode

Body

Interaction

Genetic

f0 f1 fL

fB f6

f7 f4 Mt

iviutation and repai

Reference

A parametric generative Lindenmayer system

- A set of production rules with parameters
- Rules are activated and generate a genotype
- For example:

Genotype

```
//L
w:w0, 2
w:w1
i:axiom=C(-0.7267972738482058)C(0.6512542888522148)w0()
[[rotZ(0.01436303136870265)S()[s()[rotY(0.47939520375803113)]
rotZ(1.7156715150922537)S()[rotY(0.6546807433478534)]
rotZ(0.7289054011926055)S(0.6272945767268538)]]
rotY(0.24517498910427094)S()[S(rotstif=0.9601573273539543), 0.0,
maxwords=300
r:pred=w1, succ=C(0.33147175842896104)
r:pred=w2, cond=$0=0.6200042264536023&$0>0.5498812331352383,
succ=S(0.5446961037814617)
r:pred=w2, succ=S()
```


fH representation

similarity

list of body components (sticks)

with "links" and properties

joined according to links'

Body:

Brain:

- list of NN connections, effectors. sensors with "links" and properties
- connected according to links' similarity

fH representation

Body:

- list of body components (sticks) with "links" and properties
- joined according to links' similarity

Brain:

- list of NN connections, effectors. sensors with "links" and properties
- connected according to links' similarity

```
Genotype
          i:0.1912, 0.509, 0.4535, -0.9480, -0.9568, 0.4396, fr=0.221
          i:fr=0.619
          i:0.1912, 0.5090, 0.4535, -0.9481, -0.9568, 0.4396, fr=0.221
          i:-0.6167, 0.3991, -0.5147, 0.2721, 0.6604, -0.9171, I=1.055
          i:fr=0.619
          i:0.1912, 0.5091, 0.4535, -0.9481, -0.9568, 0.4396, fr=0.221
          i:0.6999, 0.4073, -0.7687, -0.1117, -0.8154, 0.4741, rotstif=0.88
```


fB representation

Model

Body Brain

.

Genetics

f1 fL

fB

f6 f7 f4

Mutation and repa

- 26 characters of latin alphabet, from 'a' to 'z'
- every sequence starting after aa and extending to the first zz is considered a gene
- neurons are encoded in quotation marks using their original names
- genes are interpreted as encoded objects in the fH encoding (i.e., fB is converted to fH as shown earlier in the genetic encoding conversion graph)
- this encoding exhibits properties similar to DNA
- Operators: horizontal gene transfer, crossing over, substitution, deletion, insertion, gene duplication, translocation

fB representation

Model

Body Brain

Camadiaa

f1 fL fH

fB f6 f7 f4

f7 f4 Mutati

- 26 characters of latin alphabet, from 'a' to 'z'
- every sequence starting after aa and extending to the first zz is considered a gene
- neurons are encoded in quotation marks using their original names
- genes are interpreted as encoded objects in the fH encoding (i.e., fB is converted to fH as shown earlier in the genetic encoding conversion graph)
- this encoding exhibits properties similar to DNA
- Operators: horizontal gene transfer, crossing over, substitution, deletion, insertion, gene duplication, translocation

f6 representation

Model

Body Brain

Camadiaa

f1 fL fH fB

> f6 f7 f4

Mutation and rep

- "chemical" substances in 3D
- transforms initial substances into an organism
- rules of growth of body and brain
- saturation threshold to fire a rule
- propagation and changes of substances along growth directions
- propagation of properties of grown elements

f6 representation

Model

Body Brain

Genetic

f1 fL fH fB f6 f7 f4 Mutation and r

- "chemical" substances in 3D
- transforms initial substances into an organism
- rules of growth of body and brain
- saturation threshold to fire a rule
- propagation and changes of substances along growth directions
- propagation of properties of grown elements
- example:
 - 4 rules
 - 3 substances
 - 2 properties

```
0.144 0.833 0.940, 0.546 0.249 grow stick, 0.859 0.604 0.707, 0.516 0.600 0.941 0.876 0.303, 0.038 0.630 grow stick, 0.902 0.320 0.035, 0.648 0.525 0.767 0.201 0.636, 0.751 0.022 grow stick, 0.321 0.661 0.663, 0.311 0.319 0.951 0.283 0.454, 0.428 0.997 grow stick, 0.996 0.554 0.162, 0.192 0.160
```

f7 representation

Model

Body Brain

Constic

f1 fL fH fB f6 f7

Mutation and repa

Reference

- "messy" encoding
- any string of uppercase characters is a valid genotype
- simple genetic operators
- various interpretation approaches are possible, for example:
 - sections correspond to elements of body and brain:
 Z AAAAA BCLQU BCLQU BCLQU YYYYB BCNDG BCLQU BCLQU ...
 - SectionTag 'Z' starts the Parts section:
 AAAAA label, BCLQU BCLQU BCLQU ... coordinates
 - labels are calculated as follows:

AAAAA =
$$0 \cdot 26^4 + 0 \cdot 26^3 + 0 \cdot 26^2 + 0 \cdot 26^1 + 0 \cdot 26^0 = 0$$

YYYYB = $24 \cdot 26^4 + 24 \cdot 26^3 + 24 \cdot 26^2 + 24 \cdot 26^1 + 1 \cdot 26^0 = 11406097$

. . .

f4 representation

Model

Body Brain Interactic

Genetics

fL fH fB f6 f7

f4 Mutation and renai

- encodes development of "cells" (division and differentiation)
- genes are commands of differentiation
- these instructions are executed in parallel
- supports symmetry and modularity
- development starts with a single, undifferentiated ancestor cell
- stops when all the cells are differentiated
- a complete description: https://www.framsticks.com/a/al_geno_f4.html

f4 representation

Model

Body Brain

Genetics

f1 fL fH fB f6 f7

Mutation and repair

- encodes development of "cells" (division and differentiation)
- genes are commands of differentiation
- these instructions are executed in parallel
- supports symmetry and modularity
- development starts with a single, undifferentiated ancestor cell
- stops when all the cells are differentiated
- a complete description: https://www.framsticks.com/a/al_geno_f4.html

```
/*4*/<<<<\BX><N:N[-2:-3.12]>X>gX>N:|>Xc>
<N:T>X>
```


f4 development

Model

Body Brain

Genetic

- 10
- fL
- fH
- ---
- ---
- 14

f4 development

Model

Body Brain

Genetic

10

fL

-

6E

16

17

Mutation and repair

f4 examples

Model

Body Brain

Genet

f0 f1

fL fH

fH fB

f6

f7

Mutatio

D 6

Neural links are duplicated when a neuron divides:

$$/*4*/$$
 $N:N[-1:10]<><>>$

Parts of the genotype may be interpreted many times:

f4 crossing-over idea

Body

Interaction

Constin

f0

£

- 11

1

- 6

f7

...

Mutation and repa

f4 crossing-over idea

Model

Body

1-4----

Conetic

f0

fl fl

f

11

10

f7

Mutation and so

Mutation and repair

Model

Body Brain

interac

Genetic

f0 f1

fL

fŀ

f€

f7

17 64

f4

Mutation and repai

- Mutation: modification of every element of a genotype. Small, local changes
- Validity test: many aspects
- Repair: attempt to correct an invalid genotype
 - ensure each property value is within allowed interval
 - fix neural links
 - contextual: match brackets etc.
 -

Model		
	[HK08]	Maciej Hapke and Maciej Komosinski. "Evolutionary Design of Interpretable Fuzzy Controllers". In: Foundations of Computing and Decision Sciences 33.4 (2008), pp. 351-367. URL: http://www.framsticks.com/files/common/EvolveInterpretableFuzzyControl.pdf.
Genetics 10 11 11 11 18 19 16 17 14 Mutation and repair	[HKW03]	Maciej Hapke, Maciej Komosinski, and Dawid Waclawski. "Application of Evolutionarily Optimized Fuzzy Controllers for Virtual Robots". In: Proceedings of the 7th Joint Conference on Information Sciences. North Carolina, USA: Association for Intelligent Machinery, Sept. 2003, pp. 1605–1608. URL: http://www.framsticks.com/files/common/EvolvedFuzzyControl_CINC2003.pdf.
	[JK06]	Jacek Jelonek and Maciej Komosinski. "Biologically-inspired Visual-motor Coordination Model in a Navigation Problem". In: Knowledge-Based Intelligent Information and Engineering Systems. Ed. by Bogdan Gabrys, Robert Howlett, and Lakhmi Jain. Vol. 4253. Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2006, pp. 341–348. DOI: 10.1007/11893011_44. URL: http://www.framsticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationModel.pdf.
	[KR01]	Maciej Komosinski and Adam Rotaru-Varga. "Comparison of different genotype encodings for simulated 3D agents". In: Artificial Life Journal 7.4 (Fall 2001), pp. 395—418. DOI: 10.1162/106454601317297022. URL: http://www.framsticks.com/files/common/ComparisonGeneticEncodings3DAgents.pdf.
	[KU04]	Maciej Komosinski and Szymon Ulatowski. "Genetic mappings in artificial genomes". In: Theory in Biosciences 123.2 (Sept. 2004), pp. 125-137. DOI: 10.1016/j.thbio.2004.04.002. URL: http://www.framsticks.com/files/common/GeneticMappingsInArtificialGenomes.pdf.