Biologically-inspired visual-motor coordination in a navigation problem

Jacek Jelonek Maciej Komosinski

www.framsticks.com

Details of this research are available in [JK06].

Framsticks

Introduction

Brain

Behavior

blem formulati

Biological inspiration

Salutio

Solutio

Feature aggregat

Summary

- three-dimensional life simulation environment
- physical structures (bodies) and control systems (brains) of creatures are modeled
- various kinds of experiments available, including simple optimization (by evolutionary algorithms), coevolution, open-ended and spontaneous evolution, distinct gene pools and populations, diverse genotype—phenotype mappings, and species and ecosystems modeling.

Framsticks' receptors

Introduction

Recentor

Behavior

Biological inspiration

Ontical illusions

Solutio

Image featur

Feature aggrega

-

Summary

Framsticks' "brains"

Introduction

Recepto

Behavior

Problem formulat

Biological inspiration

Optical illusion

. . .

Feature aggregati

C-----

References

...can be composed of many neurons and many neuron types, including non-linear units, complex processing units, delay units, memory units, and even a fuzzy rule-based control system (shown below).

Studying agents' behavior

ntroduction

Recepto

Behavior

Biological

Ontical illusions

منسام

Image feature

Feature aggregat

Optimization

Summary

Introduction

Recepto

Behavior

Problem formulation

Biological inspiration

Optical illusion

والمناو

Image featur

_ _

Architecture

Optimization

Summary

References

The aim of the project:

Design and implementation of the visual-motor coordination module in which motor actions, depending only on visual stimuli, solve some navigation tasks.

Introduction

Recept

Behavior

Problem formulation

Biological inspiration

Optical illusion

Salutia

Image featu

Architecture

Optimizatio

Summary

References

The aim of the project:

Design and implementation of the visual-motor coordination module in which motor actions, depending only on visual stimuli, solve some navigation tasks.

Introduction

Recept

D . . .

Problem formulation

Biological inspiration

Ontical illusion

. . .

Solutio

Image feati

Feature aggres

Optimizatio

Summary

References

The aim of the project:

Design and implementation of the visual-motor coordination module in which motor actions, depending only on visual stimuli, solve some navigation tasks.

Introduction

Recept

Behavior

Problem formulation

Biological inspiration

Optical illusions

Cal dia

Image featur

Eastura same

Architecture

Summary

References

The aim of the project:

Design and implementation of the visual-motor coordination module in which motor actions, depending only on visual stimuli, solve some navigation tasks.

To do list:

- Definition of a navigation experiment with the success criterion
- ② Design and implementation of the visual-motor coordination model
- Tests verification of the model

Navigation experiment

Introduction

Recepto

Robavios

Biological inspiration

Ontical illusions

-,----

. . .

Image featur

reature aggreg

Ontimizatio

Summar

"Life and death zones" navigation problem

Introduction

Recept

Robavios

Problem formulation

Biological inspiration

. . .

Jointio

image reatur

reature aggrega

Optimizatio

Summary

References

M(img) – movement speed [-1,1] based on visual stimulus img

Possible navigation solution of the "life and death zones" problem:

$$M(img) = sin(\alpha)$$

Formal problem definition

Introduction

Recepto Brain

Behavior

Problem formulation

Biological inspiration

Optical illusion

opinear minister

Image featur

mage reatu

Architecture

Optimization

Summary

References

 $img_i - i$ -th image (its features) in a trip around the 3D object, $M(img_i)$ – expected value of movement velocity for img_i – e.g., $\sin(\alpha)$, $M'(img_i)$ – velocity output signal of the visual-motor coordination module.

Success measure = optimization function:

$$\min \sum_{i=0}^{n} |M(img_i) - M'(img_i)|$$

Architecture – data flow

Introduction

Recepto

Robavior

Problem formulation

Biological inspiration

Optical illusions

0 1 .1

Image featur

·······go ·······

Architecture

Optimization

Summary

References

visual-motor coordination module

Feature design – biological inspiration

Introduction

Recepto

Behavior

Problem formulat

Biological inspiration

Optical illusion

Optical musion.

Calutia

Image feature

Feature aggrega

Ontimination

Summary

References

Mach bands:

All bars are uniformly colored, but each of them appear darker on the right side than on the left.

Hermann grid illusion

Recepto

Behavior

Problem formulat

Biological inspiration

Optical illusions

Solution

Image features

Feature aggrega

0 11 1 11

Summary

References

Dark patches appear in the street crossings, except the ones you are directly looking at.

Springer illusion

ntroduction

Recepto

Behavior

oblem formulati

Biological inspiration

Optical illusions

Solution

Image feature

Feature aggregation

Ontimization

Summary

References

The dot pattern can produce the perception of faint diagonal lines.

Explanation – lateral inhibition

Introduction

Recepto

Robavior

roblem formulation

Biological inspiration

Optical illusions

Solution

Image feature

Feature aggrega

Architecture

C.....

I-order visual cortex

Introduction

Recepto

. . .

Biological

Ontical illusions

Solution

Image featur

Feature aggregati

Architecture

Summary

Poforoncos

Image features – edge attributes

Introduction

Recepto

D-1----

Biological inspiration

Optical illusions

C = 1............

Image feature

_ _ _

Architecture

Optimization

Summary

Problem – variable number of features

Introduction

Recepto

Rehavior

Darblana farmalaki

Biological inspiration

Optical illusions

Salutia

Image featur

Feature aggregat

Architecture

Summary

Formal problem definition – continuation

Introduction

Recepto

Behavio

roblem formulati

Biological inspiration

Optical illus

Solution

Image features

Feature aggreg

Ontimization

Summary

References

$$min\sum_{i=0}^{n}|M(img_i)-M'(img_i)|$$

 $img_i - i$ -th image

 $img_i \rightarrow V_i$ (feature extraction)

 V_i – set of edges of the *i*-th image, each edge is described by 4 attributes (x, y, length, alpha).

$$v_i = M'(V_i)$$

Formal problem definition - continuation

Introduction

Recepto

Behavior

roblem formulati

Biological inspiration

Solutio

Image feature

....gc .catar

Architecture

Summary

References

$$min \sum_{i=0}^{n} |M(img_i) - M'(img_i)|$$

img_i - i-th image

 $img_i \rightarrow V_i$ (feature extraction)

 V_i – set of edges of the *i*-th image, each edge is described by 4 attributes (x, y, length, alpha).

$$v_i = M'(V_i)$$

Problems:

- Design of the parametric model M', i.e., a parametric function which computes visual-motor coordination output (y_i) for any set of features (edges) V_i .
- ② Aggregation of features.

Feature aggregation – "fuzzy" sum of attributes

Introduction

Recepto

Behavior

roblem formulation

Biological inspiration

Optical illusions

Solutio

Image feature

Feature aggregation

Optimization

Summary

$$v_i = M'(V_i)$$

$$V_i = \left\{A_j : A_j = \left\langle x_{i,j}, \ y_{i,j}, \ length_{i,j}, \ alpha_{i,j}
ight
angle
ight\}$$

$$v_i = M'\left(\sum_i f_1(x_{i,j}), \sum_i f_2(y_{i,j}), \sum_i f_3(length_{i,j}), \sum_i f_4(alpha_{i,j})\right)$$

The architecture of the motor area

Introduction

Recepto

Behavior

oblem formulation

Biological inspiration

Optical illusions

Solutio

Image featur

Feature aggrega

Architecture

Summary

Introduction

Recept

Rehavior

Biological inspiration

Optical illusions

Salutia

Image feature

Eastura ager

Architecture

Optimization

Summary

References

variable step gradient optimization

Introduction

Recepto

Rehavior

Problem formulati

Biological inspiration

Optical illusion

Solutio

Image featur

....gc .cata

Architecture

Optimization

Summary

- variable step gradient optimization
- optimization functions:

$$err = SUM(|M(o) - M'(o)|)$$

$$std = STD(M(o) - M'(o))$$

$$err + std$$

Introduction

Recepto

Rehavior

oblem formulati

Biological inspiration

Optical illusions

Solutio

Image featur

Feature aggre

Architecture

...

Summary

variable step gradient optimization

• optimization functions: err = SUM(|M(o) - M'(o)|) std = STD(M(o) - M'(o))err + std

Introduction

Receptor Brain

Behavior

oblem formulati

Biological inspiration

Optical illusions

Solutio

Image featu

Feature aggrega

Optimization

Summary

Reference:

variable step gradient optimization

• optimization functions: err = SUM(|M(o) - M'(o)|) std = STD(M(o) - M'(o))err + std

To do list - done:

- ✓ Definition of a navigation experiment with the success criterion
- ✓ Design and implementation of the visual-motor coordination model
- √ Tests verification of the model

Demo

Introduction

Recepto

Rehavior

roblem formulatio

Biological inspiration

Optical illusions

Image features

Feature aggrega

Architecture

Optimization

Summary

References

https://www.framsticks.com/files/varia/VEye_sphere_navigation.png

https://www.framsticks.com/files/varia/VEye_gui.png

https:

 $// \verb|www.framsticks.com/files/varia/VEye_visual-motor_coordination.mp4|$

Summary

Introduction

Receptors
Brain
Behavior

Problem formulation

Biological inspiration

Image feature

Architecture
Optimization

Summary

- a new visual-motor coordination model has been proposed,
- biologically-inspired image features (edges) and a small set of their attributes (position x, y; angle and length) allow to successfully map high-level image information into low-level, single motor value (effector speed),
- the model has been successfully verified in "life & death zones" navigation tasks,
- additional experiments have proved generalization capability of the model changing the size of the object and changing the distance of the agent from the object hardly increased error, so the system proved to be robust to minor changes in the environment,
- an interesting feature of the proposed model is that the system performance can be visualized and interpreted (explained) it is possible to estimate the influence of each edge on the output value, and to visualize it.

Future work

Introduction

Recept

Behavior

roblem formulat

Biological inspiration

Solutio

Image featur

Architecture Optimization

Summary

- experiments with unsupervised learning approach,
- implementation of better optimization techniques metaheuristics,
- new navigation tasks in the 3D space,
- progression from simple S-R behavioral patterns toward more complex ones by the design and implementation of new cognition modules, which would lead to successful behaviors in more advanced and demanding tasks.

References I

[JK06]

Introduction

Recept

Behavior

Problem formulation

Biological inspiration

Optical illus

Solutio

Image feature

Feature aggre

Architecture

Optimization

Summary

References

Jacek Jelonek and Maciej Komosinski. "Biologically-inspired Visual-motor Coordination Model in a Navigation Problem". In: Knowledge-Based Intelligent Information and Engineering Systems. Ed. by Bogdan Gabrys, Robert Howlett, and Lakhmi Jain. Vol. 4253. Lecture Notes in Computer Science.

Berlin/Heidelberg: Springer, 2006, pp. 341-348. DOI: 10.1007/11893011_44. URL: http://www.frameticks.com/files/common/BiologicallyInspiredVisualMotorCoordinationMon

// www.framsticks.com/files/common/BiologicallyInspired Visual Motor Coordination Model.pdf.