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Model constraints

at most one Joint can directly connect two Parts

each Joint must be connected with two distinct Parts

all Parts must be directly or indirectly connected with each other
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Native simulation engine – MechaStick

physics-based: create real-world feeling to intuitively understand behaviors

not necessarily very accurate but fast – performance matters demo

Parts: atomic physical objects

Joints: description of internal forces and constraints, visualized as sticks

—

rigid bodies: no

volume bodies: no

collision detection within creatures: no
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Symmetry

Figure: Vitruvian Man
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Symmetry. What’s that?

Definition

Symmetry is an intrinsic property of a mathematical object which causes it to remain
invariant under certain classes of transformations (such as rotation, reflection,
inversion, or more abstract operations).
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Symmetry in various disciplines

Figure: The Taj Mahal, Agra, India,
1648 r.

Physics

Math

Music

Poetry

Architecture

Moral symmetry
(tit for tat)
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Symmetry

Herman Weyl, “Symmetry”

Symmetry is an idea which has guided man through the centuries to the understanding
and the creation of order, beauty and perfection.
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Symmetry in biology

Figure: Symmetry – a popular
evolutionary concept.

Popular evolutionary concept

Usually bilateral symmetry
(the bilateria)

Oldest known symmetrical
organism: Vernanimalcula
(600 mln years ago)

Notable asymmetrical
exceptions: sponges.
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Sponges

Figure: Sponges
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Symmetry everywhere?

Animals are symmetrical only superficially and only in a macro scale

Asymmetry in chemistry

Alice’s cat

DNA is clockwise
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What is on the other side of looking glass?

Figure: On the other side

Is the reflected world
possible?

Let us reflect the whole
universe. . . from stars till
atoms. . .

A reflection of neutrino is
impossible → reflected world
is impossible. . .

unless we also reflect the
arrow of time. . .
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Why symmetry is such a popular evolutionary concept?

An open problem.

Females of some species prefer males with the most symmetrical sexual ornaments.

For humans, there are proved positive correlations between facial symmetry and
health and

between facial symmetry and perception of beauty

Intuition: bilateral symmetry resulted from the direction of movement of living
creatures

Proof: positive correlations between locomotive efficiency and morphological
symmetry

If so, why in the world of flowers symmetry (usually radical) is so common?
Certainly not for locomotion.
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Numerical measure of symmetry – motivations

Common language is capable to express various degrees of symmetry, but no
general numerical symmetry definition exists

Natural, binary notion of symmetry is insufficient for research

Numerical measure of symmetry could allow determining the extent to what an
object is symmetrical, but also. . .

if one object is more symmetrical than another.

Symmetry is not such a popular concept in artificial worlds, so in order to study the
phenomenon of symmetry and its implications, there is a need for defining a
numerical, fully automated and objective measure of symmetry for creatures living
in artificial environments
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More motivations

A tool for researcher (earlier: “similarity” measure)
Possible research applications:
Do symmetrical creatures move faster/further/more reliably?
Do symmetrical creatures perform better in environments they were not evolved in?
Does evolution produce more symmetrical creatures in worlds with difficult
terrain/bigger/smaller gravitation?
. . . and more
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Creature’s model (framsticks)

Only skeleton is taken into account.
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Solid 3D objects
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Symmetry measure design (1)

The Symmetry Condition. If c is perfectly bilaterally symmetrical, then
sym(c) = 1.0.

The Asymmetry Condition. If c is completely asymmetrical then sym(c) = 0.0.

The Common Sense Condition. If c1 is more symmetrical than c2, then
sym(c1) > sym(c2).

The Proportional Difference Condition. The difference between sym(c1) and
sym(c2) should correspond to the difference in anatomical symmetry between c1
and c2.

The Scalability Condition. The proposed measure should be robust against
scaling: for creature c2 that is a scaled version of c1 (body enlarged or
diminished), we expect sym(c2) = sym(c1).
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Symmetry measure design (2)

Let us denote symmetry of a creature c about plane p as sym(c , p).
We say that “a creature is symmetrical” if it is symmetrical about any plane, therefore
we are looking for a plane that yields the highest symmetry:

sym(c) = max
p

(sym(c , p)) (1)
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Creature’s model

Looking for matching sticks. . .
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How to compute sym(c , p)? (1)

s1

s2

s3

p

(a)

SL SR
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How to compute sym(c , p)? (2)

s1

s2

s3

p

(a)

s1

s2

img(s1,p)

p

(b)

s3

img(s2,p)

img(s3,p)

S img(S,p)
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How to compute sym(c , p)? (3)

sym(c , p) = max
Π

(∑
(s1,s2)∈Π ws1s2sim(s1, s2)∑

(s1,s2)∈Π ws1s2

)
(2)

where

ws1s2 =

{
len(s1) + len(s2) if s1 ̸= s2

len(s1) if s1 = s2
(3)

sim(s1, s2) = exp
−dist2(s1, s2)

(α · sf )2
(4)

where α is a constant, and sf is a creature scale factor.
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Sample landscape
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Figure: In order to find the plane of the highest symmetry, we sample the 3-dimensional
(α, β, t) space for each creature stick and then perform a local search to further improve the
best found plane.
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Illustration of symmetry planes (1)

Figure: Sample creatures, estimation of their symmetry planes and symmetry values. Values of
symmetry are: 1.0, 1.0, 0.99
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Illustration of symmetry planes (2)

Figure: Values of symmetry are: 0.97, 0.82
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Illustration of symmetry planes (3)

Figure: Values of symmetry are: 0.70, 0.39
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Illustration of symmetry planes (4)

Figure: Top row: Chair (1.0), Pink Panther (0.84), Chair crooked (0.92). Bottom row:
Scorpion (1.0), Scorpion moving (0.82).
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A random set of individuals

Figure: 30 diverse creatures arranged horizontally according to their values of symmetry (the
most symmetrical on the right).
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Symmetry in human design and evolution
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Figure: Distribution of symmetry values among 84 creatures (38 designed, 46 evolved).
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Evolved creatures

Figure: Evolved creatures. Constructs with the highest symmetry are usually simple.
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Designed creatures

Figure: Designed creatures with symmetry of 1.0.



Framsticks
Reminder of the creature
model

Symmetry
itself

Static
symmetry
Motivations

Approach

Experiments

Motion
symmetry
Motivations

Approach

Further research

References

Motivations

Operates on the phenotype in motion (opposed to: symmetry of genotype)

Characterizes motion (a feature of the motion pattern).

Other: whether (to what degree) the movement is periodic or chaotic, how
dynamic, effective it is
Implications:
understanding the evolution on Earth
methods of locomotion both in living animals and designed robots
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Static symmetries

(a) Basic Quadruped (1.000) (b) Bulldog (1.000)

(c) Rototiller (0.850) (d) Imunus Katehe (0.956)

Figure: Symmetry planes of the four considered creatures. Symmetry values are given in
brackets.
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3D paths
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(d) Imunus Katehe

Figure: Sample 3D paths for four creatures.



Framsticks
Reminder of the creature
model

Symmetry
itself

Static
symmetry
Motivations

Approach

Experiments

Motion
symmetry
Motivations

Approach

Further research

References

2D paths
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Figure: 10 paths for four considered creatures.
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Symmetry (3df) over time
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Figure: The values of symmetry over time.
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Figure: The creature 2D paths (red) with vertical planes shown (green).
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Smoothed paths
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Figure: The original paths (red) and the ones smoothed using a low pass filter (blue).
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Figure: Movement directions based on the smoothed paths over time.
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Vertical (1df) symmetry over time
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Figure: The values of vertical (1df) symmetry over time.



Framsticks
Reminder of the creature
model

Symmetry
itself

Static
symmetry
Motivations

Approach

Experiments

Motion
symmetry
Motivations

Approach

Further research

References

Static symmetries

(a) Basic Quadruped (1.000) (b) Bulldog (1.000)

(c) Rototiller (0.850) (d) Imunus Katehe (0.956)

Figure: Symmetry planes of the four considered creatures. Symmetry values are given in
brackets.
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Final symmetry values (soft 1df symmetry)

Table: Soft dynamic 1df symmetries (soft 1df), their standard deviations and maximal and
minimal values.

creature soft 1df std.dev. min max
Basic Quadruped 0.777 0.063 0.588 0.950
Bulldog 0.475 0.062 0.162 0.768
Rototiller 0.688 0.109 0.154 0.932
Imunus Katehe 0.327 0.119 0.090 0.737
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Evolving movement

MechaStick
experiments in 2001: diverse ways of movement evolved

were they really diverse?
mostly simple creatures (a few sticks. . . large constructs are inefficient)
most interesting ones were designed by hand and NNs were evolved
new discovery: unexpected numerical instability

ODE
high expectations (accuracy, volume bodies, self-collisions)

evolving movement turned out to be even more difficult! :o
elasticity of MechaStick was so important!
sticks as cylinders: rolling (“passive”). . . and stability phase does not help
sticks as cuboids: instability of simulation, oscillations, and. . . rolling (“active”)
many simulation parameters, each of them is important
interdependence between mass, gravity, collision parameters,
muscle strength and speed
rolling is a local optimum (so far) demo

lots of lessons learned. . . and weeks of simulation.
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Further research

For which objectives (speed and locomotion, predation, height, etc.) evolution
promotes symmetrical creatures?

Is symmetry beneficial for creatures evolved spontaneously?

Does symmetry emerge for creatures evolved spontaneously? (evolve, observe,
surprise!)

Which genetical encodings promote symmetry?

Symmetry as a component of fitness formula.

Encoding that preserves symmetry. Comparison with other encodings.
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