Emergence and self-organization in Framsticks

www.framsticks.com

Study #1

- Provided:
 - Basic building blocks (sticks, neurons, connections)
 - Fitness function (selection, reproduction)
 - Environment
 - Change
- Emergence of *locomotion*
- Self-organization of
 - Body design
 - Brain control
 - Body and brain coupling/cooperation

Study #1, analysis

- See sampleevol_hq.avi, evolutionary_stages.gen
- We got:
 - Body design appropriate for walking
 - Brain, sensors, muscles evolved to obtain high speed
 - Neural control adjusted to control a walking body (coordination!)
 - Emergence of walking (fitn
 - Another environment → ar (rolling, swimming, flying,
- Analysis reveals
 - Redundancy
 - Hidden interconnections ar
 - Evolution does not have to
 - Evolution can discover nev
 - Evolution may be unable to a monotonic, limited proces
 - Solutions (agents) are not s

Study #2

- Provided:
 - Agents: consumers and food
 - Environment
 - consumer reproduction based on energy (food) found
 - food added at a constant rate
 - Change
- Self-organization of ?
- Emergence of ?

Study #2

• Three cases:

- A. Consumers' ability to ingest food constant
- Consumers' ability to ingest food evolved
 - B. Consumer reproduction: random location
 - C. Consumer reproduction: close to parent

Study #2. Case A

Study #2. Cases B and C

- Case B. Eat more and reproduce! → extinction ©
- Case C.
 Selection on groups. Some groups do "B", but some... do not. → stability.
- A single change in rules causes emergence of a totally different system behavior!

Study #2, analysis

- Emergent population dynamics: periodic changes. (Un)stability. Attractors. Chaos. Sensitivity analysis. Group behaviors. Swarming. Extinction. Group selection. Food chain. Geographical differentiation. Tragedy of the commons. Restraint. Altruism.
- microscale = individual, macroscale = population, mesoscale = groups