Framsticks general information

General information

- developed since 1996
- authors and main developers: Maciej Komosinski (CS dept. at PUT) and Szymon Ulatowski
- other people involved in technical support, development, and experiments

Main points of users' interest

- simulation
- biology, evolution
- robotics
- neuroscience
- cognitive science
- computer science
- visualization
- education and understanding
- simplicity / complexity
- entertainment
- versatility

Users

- regular users
- students
- teachers and scientists:
 - Virtual Life laboratory, Utrecht University, Netherlands
 - Bio-inspired Adaptive Machines Course at Autonomous Systems Lab, Lausanne, Switzerland
 - Cognitive Science Lab., Dept. of Philosophy,
 William Paterson University of New Jersey, USA
 - **–** ...
- advanced users from all over the world

Events

- articles in paper and electronic magazines
- interviews for newspapers, magazines, radio, and TV
- lectures, seminars, presentations, and demonstrations in conferences, workshops, academic institutions and popular shows
- third-party demonstrations (artistic exhibitions, thematic presentations history of technology, evolution, medicine, etc.)

Presentations invited by

- LEGO Lab, University of Aarhus, DK.
- TheoLab, Jena, DE. Friedrich Schiller University. Research Unit for Structure Dynamics and the Evolution of Systems
- University of Dortmund, DE. Chair of Systems Analysis, Department of Computer Science
- Max Planck Institute, Lipsk, DE.
- Santa Fe Institute, USA.
- European Summer School, PL
- Univ. of North Carolina at Charlotte, USA

Framsticks

Software

Artificial Life Lab (mobile app)

Native library with C++ and python bindings

```
class FramsticksLib:
 def getSimplest(genetic_format) \rightarrow str
 def evaluate(genotype_list: list[str]) \rightarrow list[dict]
 def mutate(genotype_list: list[str]) \rightarrow list[str]
 def crossOver(geno_parent1: str, geno_parent2: str) \rightarrow str
 def dissimilarity(genotype_list: list[str]) \rightarrow np.ndarray
 def isValid(genotype_list: list[str]) \rightarrow list[bool]
```


Network Software

Technical information (outdated)

- Sources: C++, lex, bison, m4, awk
- Sources available in SVN repository SDK
- Total source:78 KLOC, 2 MB
- third-party libraries:PLIB, GLPNG

Sample uses and experiments

- synthesizing (building) agents
- studying agents' behaviors
- optimizing agents
- designing genetic representations
- studying evolutionary dynamics, coevolution, migration, etc.
- evolving neural and fuzzy controllers
- understanding evolved brains
- evolution of communication
- designing custom user experiments
- publications available from the web site

Synthesizing agents

Studying agents' behavior

Potential behaviors

- walking/swimming/jumping/rolling/...
- memory
- predation, prey
- symbiosis, cooperation
- mutual identification and location
- preferences, group/social behaviors
- communication
- feelings, consciousness, ...?
- ...they discover, learn and utilize simulator imperfections!

Framsticks: an open system

- custom fitness functions
- experiment definition scripts for custom definition of system framework; user-defined neuron types
- support for various genetic representations
 - conversion to the basic format
 - genetic operators
- network submission of experiment proposals and interesting genotypes; Experimentation Center
- discussion forums for users and developers
- custom definitions of visualization rules
- open source projects

Blocks scenery

Further development and research

- network programs, distributed and parallel evolution
- other genetic representations
- more complex tasks / environments
- tools for analysis of emerged behaviors
- open-ended and spontaneous evolution
- more sensors/effectors (e.g. communication), more fitness criteria
- open system; cooperation

Inspiration for EC, AL, and KD/ML

- decomposition of hard optimization problems
- hierarchical representation of solutions
- effective crossover operator and speciation
- measures of similarity of complex solutions; global convexity of the search space
- coevolution of solutions and constraints/fitness function
- properties of various solution encodings
- automatic analysis of evolution and agent behaviors
- active perception