Framsticks general information

Maciej Komosinski Szymon Ulatowski

www.framsticks.com

General information

- Users
- Software
- **Experiments**
- Open system
- Rendering styles
- Summary

- https://youtu.be/CrWj_l-UrN4?t=60
- https://youtu.be/r5RfTmx3S4g

General information

- Users Events
- Software
- Experiments
- Open system
- Summary

- https://youtu.be/CrWj_l-UrN4?t=60
- https://youtu.be/r5RfTmx3S4g

- developed since 1996
- authors and main developers: Maciej Komosinski and Szymon Ulatowski
- volunteers involved in development, experiments, and technical support

Main points of users' interest

ĴΣh

anst-

(±)-

ĴΣ⊢

- Users
- Software
- Experiments
- Open system
- Summary

- simulation
- biology, evolution
- robotics
- neuroscience
- cognitive science
- computer science
- visualization
- education and understanding
- simplicity / complexity
- entertainment
- versatility

Users

- Users
- Software
- **Experiments**
- Open system
- Rendering styles
- Summary

- regular users
- students
- teachers and researchers:
 - Virtual Life laboratory, Utrecht University, Netherlands
 - Bio-inspired Adaptive Machines Course at Autonomous Systems Lab, Lausanne, Switzerland
 - Cognitive Science Lab., Dept. of Philosophy, William Paterson University of New Jersey, USA
 - . . .
- advanced users from all over the world

Users

- Users
- Software
- **Experiments**
- Open system Rendering styles
- Summary

Events

- Users Events
- Software
- Experiments
- Open system
- Summary

- articles in paper and electronic magazines
- interviews for newspapers, magazines, radio, and TV
- lectures, seminars, presentations, and demonstrations at conferences, workshops, academic institutions and popular shows
- third-party demonstrations (artistic exhibitions, thematic presentations history of technology, evolution, medicine, etc.)

Presentations invited by

- Users
- Events
- Software
- **Experiments**
- Open system
- Summarv

- LEGO Lab, University of Aarhus, DK
- TheoLab, Jena, DE. Friedrich Schiller University. Research Unit for Structure Dynamics and the Evolution of Systems
- University of Dortmund, DE. Chair of Systems Analysis, Department of Computer Science
- Max Planck Institute, Lipsk, DE
- Santa Fe Institute, USA
- European Summer School, PL
- Princeton Institute for Advanced Study, USA. Summer School in Computation and Biology
- University of North Carolina at Charlotte, USA
- Academy of Sciences, PL
- Paris 8 University, FR

Software

- Users
- Software
- **Experiments**
- Open system Rendering styles
- Summary

Command-line and network server

Artificial Life (mobile app)

Native library with C++ and Python bindings

class FramsticksLib:

- def getSimplest(genetic_format) \rightarrow str
- def evaluate(genotype_list: list[str]) \rightarrow list[dict]
- def mutate(genotype_list: list[str]) \rightarrow list[str]
- def crossOver(geno_parent1: str, geno_parent2: str) \rightarrow str
- def dissimilarity(genotype_list: list[str]) \rightarrow np.ndarray
- def isValid(genotype_list: list[str]) \rightarrow list[bool]

Network software

Technical information

Introduction

Users

Software

- **Experiments**
- Open system
- Summary

- Sources: C++, lex, bison, m4, awk
- Third-party libraries: PLIB, GLPNG
- Sources available in SVN repository SDK
- Additional apps and modules: Python, JavaScript

Technical information - source size (C++ only)

Introduction

Users

Software

Experiments

Open system

Summary

2003: 78 KLOC, 2 MB

Technical information – <u>source size (C++ only)</u>

Software Utilities.genetics-alt. tests, FramsView, Theater other OpenGL UL_CU GUI_QT

2003: 78 KLOC, 2 MB

2024: 264 KLOC, 7.7 MB

Sample uses and experiments

- Users --
- Software
- Experiments
- Open system Rendering styles
- Summary

- synthesizing (building) agents
- studying agents' behaviors
- optimizing agents
- designing genetic representations
- studying evolutionary dynamics, coevolution, migration, etc.
- evolving neural and fuzzy controllers
- understanding evolved brains
- evolving communication and cooperation
- designing custom user experiments
- publications available from the web site

Synthesizing agents

Users

Events

Software

Experiments

Open system

Rendering styles

Genotype dat Genotype			×
Genotype Notes Body Performance Fitness Conversions	Name Genotype	Speedy bGgLLLLfffMMMMM(, LLcffffMMMMQ(, X[0:2.420, 1:-0.626, 1:-1,fo:0.04,fo:0.04][-1:1, 0:1, 0:-1,s:0.577][@-1:1.283,fo:0.041] Mq(RMMMFX[[-1:1.537, 1:2.088] IqX[]-2:-1.094,s:0], RmmDDXfMMMFfMmFX[@T:0.128]), RRIffMX[]-6:-0.703,si:2]IFFFFFX[]-6:-0.696]))	
		Mutate	
	#	g6	
(<u>2</u> K	Cancel Apply	

Synthesizing agents

Users

Softwar

Experiments

Open system

Rendering styles

Studying agents' behavior

Investigating evolution (tree, exogenous fitness)

Software

Experiments

Open system Rendering styles

Investigating evolution (tree, exogenous fitness)

Software

Experiments

Open system Rendering styles

Investigating evolution (tree, exogenous fitness)

Software

Experiments

Open system Rendering styles

Investigating evolution (tree, endogenous fitness)

Users

Software

Experiments

Open system Rendering styles

Investigating evolution (exogenous fitness)

Investigating evolution (exogenous fitness)

Investigating evolution (exogenous fitness)

Investigating evolution (individuals)

Introduction

Users

Software

Experiments

Open system Rendering styles

Summary

https://youtu.be/ZRIeOYpTS04

Potential evolved behaviors

- Users
- Software
- Experiments
- Open system Rendering styles
- Summary

- walking/swimming/jumping/rolling/...
- memory
- predation, prey
- symbiosis, cooperation
- mutual identification and location
- preferences, group/social behaviors
- communication
- feelings, consciousness, ...?
- ... they discover, learn, and exploit simulator imperfections!

Framsticks as an open system

- Users
- Software
- **Experiments**
- Open system
- _
- Summary

- custom fitness functions
- experiment definition scripts for custom definition of system framework; user-defined neuron types
- support for various genetic representations
 - conversion to the basic format
 - genetic operators
- network submission of experiment proposals and interesting genotypes; Experimentation Center
- discussion forums for users and developers
- custom definitions of visualization rules (POV-Ray, OpenGL)
- open-source projects

Style: Classic

Introduction

Users --

Software

Experiments

Open system Rendering styles

Style: Planet

- Users
- .
- Software
- Experiments
- Open system Rendering styles
- Summary

Style: Planet

- Users
- 0.0
- Experiments
- Open system Rendering styles
- Summary

Style: Blocks

Introduction

Users

Software

Experiments

Open system Rendering styles

Style: Blocks

- Users
- Softwar
- Experiments
- Open system Rendering styles
- Summary

Style: Ghost

- Users
- Software
- Experiments
- Open system Rendering styles
- Summary

Style: Chestnuts

- Users _
- Software
- Experiments
- Open system Rendering styles
- Summary

Style: Wookie

Introduction

Users –

Software

Experiments

Open system Rendering styles

Style: Wookie

Introduction

Users

Software

Experiments

Open system Rendering styles

Applications/proposals

- Users
- Software
- Experiments
- Open system Rendering styles
- Summary

- $\bullet\,$ simulating bodies controlled by CAM Brain PL/JP '98
- LEGO Lab DK '99
- simulating bodies controlled by wet brains, real neural tissues USA '00
- HP: Internet, entertainment USA '00
- UWE, Intelligent Autonomous Systems Engineering Lab., evolving real robots UK '00
- \bullet autonomous/NN agents: games/VR UK '00
- Max Planck Institute/TheoLab: evolution, phylogeny and methodology DE '00
- NASA: Space Station robot optimization USA '04
- structural design PL '18
- soft robotics, optimization of designs and control PL '23

Further development and research

- Users
- Software
- **Experiments**
- Open system Rendering styles
- Summary

- network programs, distributed and parallel evolution
- other genetic representations
- more complex tasks / environments
- tools for analysis of emerged behaviors
- open-ended and spontaneous evolution
- more sensors/effectors (e.g., communication), more fitness criteria
- evolution distributed via mobile apps and Experimentation Center

Inspiration for EC, AL, and KD/ML

- Users
- Software
- **Experiments**
- Open system Rendering styles
- Summary

- decomposition of hard optimization problems
- hierarchical representation of solutions
- effective crossover operator and speciation
- measures of similarity of complex solutions; global convexity of the search space
- coevolution of solutions and constraints/fitness function
- properties of various solution encodings
- automatic analysis of evolution and agent behaviors
- active perception