Framsticks Fuzzy Control

Maciej Hapke and Maciej Komosinski. Evolutionary design of interpretable fuzzy controllers. Foundations of Computing and Decision Sciences, 33(4):351-367, 2008. [view pdf]

Observations \& motivations

- Observations:
- framsticks move in a way similar to those evolved in the nature - e.g. virtual lizard, water snake
- the simulation confirms that real evolution makes bodies of different structures move optimally
- Questions about the reasons:
- why creatures behave in such a way
- what caused such development of B\&B
- This knowledge is hidden in the brain
- A trial to explain evolution

Knowledge representation

- ANN?
- Fuzzy system

Rules

If smell is <intensive> then go <fast>

Fuzzy variables

- Example - touch sensor
- Normalized variable domain

Fuzzy "neuron"

- Fuzzy system representation
- Mamdani approach

Inputs
Fuzzyfication
Inference
Defuzzyfication
Outputs

Evolutionary encoding of FS

- Fuzzy "neuron" genotype sections

Def
 Fuzzy sets
 Fuzzy rules

$$
\begin{aligned}
& \text { n:d="Fuzzy:ns=4, nr=2, } \\
& \mathbf{f s}=-0.1647 \text {;-0.1526;-0.0087;0.0631; } \\
& -1.0000 ;-0.8774 ;-0.7725 ;-0.6767 \text {; } \\
& 0.0087 ; 0.2308 ; 0.3585 ; 0.4806 \text {; } \\
& \text { 0.0110;0.1664;0.2362;0.2718; } \\
& \mathbf{f r}=0 ; 3 ; 1 ; 0 ; 2 ; 0: 0 ; 2 ; 3 ; 1 ; 2 ; 1 ; 1 ; 3 / \\
& \text { 2; 0; 0; 2; 1; 2:3;1;2;0;1;2;0;0/" }
\end{aligned}
$$

Example

The example of a fuzzy rule-based system with two inputs ($x 0, x 1$), two outputs ($\mathrm{y} 0, \mathrm{y} 1$), two rules (R0, R1) and five fuzzy sets (F0 .. F4) can be described as follows:

```
F0}={-0.35;0.05;0.4;0.65
F1={-1;-0.8;-0.8;-0.35}
F2={0.2; 0.5; 0.7; 0.8}
F3={-0.65;-0.5;-0.3;0.1}
F4={0.4;1;1;1}
R0: IF x0 is F0 AND x1 is F1 THEN y0 is F5 AND y1 is F2
R1: IF x0 is F2 AND x1 is F3 THEN y0 is F0 AND y1 is F1
```


Evolutionary operators

Mutation

- Add/remove a fuzzy set
- Add/remove a fuzzy rule
- Add/remove an input/output

Evolutionary operators Crossover

- One/multiple crossing points
- Inheritance
- Two parents/one descendant
- Parents may be of different length
- Crossover
- Draws \# of rules
- For each rule
- Randomly chooses a pair of rules from p1 and p2
- Draws \# of inputs and outputs
- Copies inputs and outputs

Experiment design

- Goal: to evolve only "fuzzy brain"
- Fixed body structure (parts, joints)
- Fixed \# of receptors
- Variable \# of fuzzy sets
- Variable \# of fuzzy rules

Experiments Stand-up agent

- Inputs: 2 gyroscopes, 2 touch sens.
- Output: muscle

Experiment

 Stand-up agent- Fitness function: maximize the average height
- The goal of a FS: to force the agent to stand up
- Two example creatures chosen from the population

Experiments Walker

- 4 inputs: touch receptors,
- 4 outputs: rotating muscles
- Fitness function: velocity

A movie

Walker
 Conclusions

- Walker's behavior
- Slightly jumps by means of back legs
- Runs all around, fitness function does not imply straight running
- Two fuzzy rules are enough

Inverted pendula problem

- Modified: active and elastic

Comparison with NN control

Evolved balancing behavior

Problems:

 elasticity and perceptual aliasing

Understanding evolved fuzzy rules

- in the stable position, J_{0} and J_{1} lie down on the ground, while J_{2} stands upright supporting the head in the horizontal position - after the pendulum is manually thrown off balance, it reaches the stability quite quickly and the behavior strategies depend on the side it has been pushed to:
dithas keen pushed along its bottom joing $\left(\mathrm{J}_{0}\right)$ the actuators are bent only stighty
Bottom actuaifit has been pushed crosswise to the J_{0}, it makest\&blddelatonoves and after a few cycles it usually reaches the stable position
\bigcirc if the pendulum falls upside down, the fuzzy system is unable to make it stand straight.

Understanding evolved fuzzy rules

Each fuzzy system has four inputs and two outputs. Input signals so, s1, s2, s3 come from four sensors. Based on their values, the fuzzy system sends two outputs signals for actuators: bend_bottom and bend_top. Input and output fuzzy variables are defined in the normalized domain $[-1,1]$. Input linguistic variables upright, leveled and upside_down are defined as follows: $(-1,-1,-1,0),(-1,0,0,1)$ and (0,1 , $1,1)$, while the outputs characterizing bending directions are expressed by linguistic variables right ($-1,-1,-1,0$), none ($-1,0,0,1$) and left ($0,1,1,1$).

Understanding evolved fuzzy rules

```
1. s2=leveled and s0=leveled
=> bend_bottom=left and bend_top=left
s3=leveled and sl=upside_down => bend_top=left
sl=upright => bend_bottom=left and bend_top=left
s3=upside_down
sl=upside down
=> bend_bottom=right and bend_top=left
=> bend_bottom=left and bend_top=none
```

- The pairs of sensor signals ($\mathrm{s} 0, \mathrm{~s} 1$) and ($\mathrm{s} 2, \mathrm{~s} 3$) never come together in a single premise of the rule. It is because the optimization process discovered a property of the pendulum structure: the signals from these equilibrium sensor pairs are almost the same. This is the consequence of placing sensors $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)$ and $\left(\mathrm{G}_{2}, \mathrm{G}_{3}\right)$ on the same arms, respectively.
- See text for detailed explanation and analysis of each rule.

Conclusions

- Successful (evolutionary) simplification of the fuzzy system (from 20 rules to 5 rules)
- both evolution of neural and fuzzy controllers for active inverted pendulum lead to similar pendulum behaviors
- NNs easier to optimize
- verified ability to extract knowledge from the fuzzy control system

